Chapter-8 Results and Discussion

S K Acharya, Anshuman Jena, G C Mishra and Lalu Das

This chapter deals with the results of the study or investigation discussed about it. At the end of this chapter interpretation has been made, explanation has been tried to put down and an attempt has been done to reveal the cause behind it.

Sl.	Variables	Mean	SD	CV
No.				
1.	Age (\mathbf{X}_1)	53.24	9.92	18.63
2.	Education (\mathbf{X}_2)	4.94	4.15	84.01
3.	Family Size (X ₃)	5.07	2.13	42.01
4.	Family Education Status (X ₄)	6.09	2.30	37.77
5.	No. of Vehicles changed (X ₅)	1.94	0.86	44.33
6.	Change in Consumption of Kerosene (X ₆)	-2.30	1.23	-53.48
7.	Change in Consumption of Petrol (X ₇)	8.59	10.45	121.65
8.	Changing Family Expenditure (X ₈)	637.76	462.94	72.59
9.	Changing Expenditure Allocation on Farming (X ₉)	3.38	10.90	322.49

Table 24: Descriptive statistics of independent variables with respected to Mean, Standard Deviation values.

10.	Changing Expenditure Allocation on	12.61	8.34	66.14
	Education (X ₁₀)			
11.	Changing Expenditure Allocation on Health	7.05	5.66	80.28
	(X ₁₁)			
12.	Change in Listening to Radio (X ₁₂)	-26.44	34.47	-130.37
13.	Change in Watching T.V (X_{13})	39.92	23.74	59.47
14.	Changing Interaction with Input Dealers	2.44	2.11	86.48
	(X ₁₄)			
15.	Changing Interaction with Extension Agent	3.54	2.62	74.01
	(X ₁₅)			
16.	Change in Farm Size (X ₁₆)	-0.14	0.30	-214.29
17.	Changing Cropping Intensity (X ₁₇)	51.71	27.40	52.99
18.	Changing Cultivable Land (X ₁₈)	0.10	0.69	690.00
19.	Change in Fertilizer Application (X ₁₉)	52.03	24.34	46.78

8.1 Coefficient of Correlation

Table No. 25: Coefficient of Correlation(r): Change in Perceived Effect of Radio (Y₁) vs 19 independent variables

Sl.	Variables	R	Remarks
No.		value	
1.	Age (X ₁)	0.0732	
2.	Education (X ₂)	-0.1978	
3.	Family Size (X ₃)	-0.1182	
4.	Family Education Status (X ₄)	-0.3099	**
5.	No. of Vehicles changed (X ₅)	-0.2280	*
6.	Change in Consumption of Kerosene (X_6)	0.3047	**
7.	Change in Consumption of Petrol (X ₇)	-0.3584	**
8.	Changing Family Expenditure (X ₈)	-0.2227	*
9.	Changing Expenditure Allocation on Farming (X ₉)	-0.0797	

10.	Changing Expenditure Allocation on Education	-0.0673	
	$ (X_{10}) $		
11.	Changing Expenditure Allocation on Health	0.0195	
	(X ₁₁)		
12.	Change in Listening to Radio (X_{12})	0.7292	**
13.	Change in Watching T.V (X_{13})	-0.5035	**
14.	Changing Interaction with Input Dealers (X_{14})	-0.0480	
15.	Changing Interaction with Extension Agent	-0.0835	
	(X ₁₅)		
16.	Change in Farm Size (X ₁₆)	-0.0761	
17.	Changing Cropping Intensity (X ₁₇)	0.0069	
18.	Changing Cultivable Land (X_{18})	-0.1371	
19.	Change in Fertilizer Application (X ₁₉)	-0.0164	
	r > 0.220 significant at $p = 0.05(*)$		
	r > 0.287 significant at $n=0.01(**)$		
	12 0.207 Significant at p=0.01()		

Table 2 presents the coefficient of correlation between Change in Perceived Effect of Radio on Climate change (Y_1) and 19 independent variables.

Results: It is found that the variables, Family Education Status (X_4) , No. of Vehicles (X_5) , Change in Consumption of Petrol (X_7) , Changing Family Expenditure (X_8) , Change in Watching T.V (X_{13}) , have found negative but significant correlation whereas variables like, Change in Consumption of Kerosene (X_6) , Change in Listening to Radio (X_{12}) , have positive significant correlation with the dependent variable i.e. Change in Perceived Effect of Radio on Climate change (Y_1) .

Model-1

Y1- Change in Perceived Effect of Radio

Revelation: The result has implied that the change in perceived effect of radio is dominant on the respondents, who are lagging in family education status, consuming fuel, allotting higher family expenditure & watching T.V. But consumption of kerosene and more listening to radio have positively impacted on it.

That means, Radio as a mass media, has been able to increase its impact on change perception or climate phenomenon, especially for the traditional, coastal dwelling people.

Sl.	Variables	R	Remarks
No.		value	
20.	Age (\mathbf{X}_1)	-0.3076	**
21.	Education (\mathbf{X}_2)	0.3033	**
22.	Family Size (X ₃)	0.0082	
23.	Family Education Status (X ₄)	0.3023	**
24.	No. of Vehicles changed (X_5)	0.2818	*
25.	Change in Consumption of Kerosene (X_6)	-0.4136	**
26.	Change in Consumption of Petrol (X ₇)	0.3356	**
27.	Changing Family Expenditure (X_8)	0.2386	*
28.	Changing Expenditure Allocation on Farming	0.0106	
	(X ₉)		
29.	Changing Expenditure Allocation on Education	0.2257	*
	(X ₁₀)		
30.	Changing Expenditure Allocation on Health	0.1043	
	(X ₁₁)		
31.	Change in Listening to Radio (X ₁₂)	-0.4686	**
32.	Change in Watching T.V (X_{13})	0.7681	**
33.	Changing Interaction with Input Dealers (X ₁₄)	0.2572	*
34.	Changing Interaction with Extension Agent	0.3481	**
	(X_{15})		
35.	Change in Farm Size (X ₁₆)	0.0758	
36.	Changing Cropping Intensity (X ₁₇)	0.0039	
37.	Changing Cultivable Land (X ₁₈)	0.0976	
38.	Change in Fertilizer Application (X ₁₉)	0.0655	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 26: Coefficient of Correlation(r): Change in Perceived Effect
of T.V (Y2) vs 19 independent variables

Table 3, presents the coefficient of correlation between Change in Perceived Effect of T.V (Y_2) and 19 independent variables.

Results: It is found that variables like, Education (X_2) , Family Education Status (X_4) , No. of Vehicles changed (X_5) , Change in Consumption of Petrol (X_7) , Changing Family Expenditure (X_8) , Changing Expenditure Allocation on Education (X_{10}) , Change in Watching T.V (X_{13}) , Changing Interaction with Input Dealers (X_{14}) , Changing Interaction with Extension Agent (X_{15}) , have exerted positive significant correlation, whereas variables, Age (X_1) & Change in Consumption of Kerosene (X_6) , have exerted significant but negative correlation with the dependent variable i.e. Change in Perceived Effect of T.V (Y_2) .

Model-2

Revelation: Young age respondents are highly impacted by the Television in relation to change pattern. Those are consuming less kerosene or bit ahead in the process modernization, they are watching more time Television to build ecological concept. The other variables like education, more consumption of petrol, more family expenditure, more interaction with extension agent, etc. by becoming urbanite in nature, have also been able to imply that ecological changes are predominant through learning experience through Television watching. Change in Perceived Effect of T.V is more in young, educated, cosmopolite people.

Table No. 27: Coefficient of Correlation(r): Change in Perceived Effect of Input dealer (Y₃) vs 19 independent variables

Sl.	Variables	R	Remarks
No.		value	
1.	Age (\mathbf{X}_1)	0.0580	
2.	Education (\mathbf{X}_2)	-0.1161	
3.	Family Size (X ₃)	0.2609	*
4.	Family Education Status (X ₄)	-0.1418	
5.	No. of Vehicles changed (X ₅)	0.0591	
6.	Change in Consumption of Kerosene (X_6)	-0.1450	
7.	Change in Consumption of Petrol (X ₇)	-0.0315	
8.	Changing Family Expenditure (X ₈)	-0.2231	*
9.	Changing Expenditure Allocation on Farming	-0.0292	
	(X ₉)		
10.	Changing Expenditure Allocation on Education	-0.0524	
	(X ₁₀)		
11.	Changing Expenditure Allocation on Health	0.2683	*
	(X ₁₁)		
12.	Change in Listening to Radio (X ₁₂)	-0.0951	
13.	Change in Watching T.V (X_{13})	-0.0391	
14.	Changing Interaction with Input Dealers (X ₁₄)	0.6009	**
15.	Changing Interaction with Extension Agent	0.1112	
	(X ₁₅)		

16. Change in Farm Size (X ₁₆)	-0.2061
17. Changing Cropping Intensity (X ₁₇)	0.0619
18. Changing Cultivable Land (X ₁₈)	-0.1879
19. Change in Fertilizer Application (X_{19})	0.0692
r>0.220 significant at p=0.05(*)	
r>0.287 significant at p=0.01(**)	

Table 4 presents the coefficient of correlation between Change in Perceived Effect of Input dealer (Y_3) and 19 independent variables.

Results: It has been found that the variables, Family Size (X_3) , Changing Expenditure Allocation on Health (X_{11}) , Changing Interaction with Input Dealers (X_{14}) , have recorded a positive significant correlation whereas variable Changing Family Expenditure (X_8) , have recorded a negative significant correlation with dependent variable Change in Perceived Effect of Input dealer (Y_3) .

Model-3

Revelation: Bigger family size needs more food or production to fulfill their requirements which make the rural people highly impacted by input dealer at grass root level through more interaction with input dealers in relation to perceiving change pattern.

The perception on change pattern, as recorded by the input dealers, has been built up and characterized by some management and motivational behavior. The change in family indicator, is a good indicator to estimate the change dynamics perception.

Sl. No.	Variables	R value	Remarks
1.	Age (X ₁)	0.0042	
2.	Education (\mathbf{X}_2)	0.0263	
3.	Family Size (X ₃)	0.1079	
4.	Family Education Status (X ₄)	0.0284	
5.	No. of Vehicles changed (X ₅)	0.1265	
6.	Change in Consumption of Kerosene (X_6)	-0.1505	
7.	Change in Consumption of Petrol (X ₇)	0.0318	
8.	Changing Family Expenditure (X ₈)	-0.0367	
9.	Changing Expenditure Allocation on Farming (X ₉)	0.0343	
10.	Changing Expenditure Allocation on Education (X_{10})	-0.0154	
11.	Changing Expenditure Allocation on Health (X_{11})	-0.0186	
12.	Change in Listening to Radio (X_{12})	0.0122	
13.	Change in Watching T.V (X_{13})	0.3183	**
14.	Changing Interaction with Input Dealers (X_{14})	0.1735	
15.	Changing Interaction with Extension Agent (X ₁₅)	0.5060	**

Table No. 28: Coefficient of Correlation(r): Change in Perceived Effect of Extension agent (Y₄) vs 19 independent variables

16. Change in Farm Size (X ₁₆)	-0.0142	
17. Changing Cropping Intensity (X ₁₇)	0.0160	
18. Changing Cultivable Land (X ₁₈)	0.0664	
19. Change in Fertilizer Application (X ₁₉)	0.4944	**
r>0.220 significant at p=0.05(*)		
r>0.287 significant at $p=0.01(**)$		

Table 5 presents the coefficient of correlation between Change in Perceived Effect of Extension agent (Y_4) and 19 independent variables.

Results: Variables, Change in Watching T.V (X_{13}), Changing Interaction with Extension Agent (X_{15}), and Change in average fertilizer dose (X_{19}), have been found to have strong positive correlation with dependent variable, Change in Perceived Effect of Extension agent (Y_4).

Model-4

Y4- Change in Perceived Effect of Extension agent

Revelation: People with cosmopolite nature are highly impacted by extension agent in relation to perceiving change pattern. To fulfill the demand by increasing the production, new technologies are to be informed regularly. Day by day more watching Television and interacting with extension agent, have made people more cosmopolite. Higher cosmopolite nature leads to gradual increase in perceived effect of extension agent in relation to changing time. Higher fertilizer application refers to more input investment which need more consultation with the resource person i.e. extension agent that will minimize their risk. So, progressive farmers are highly impacted by the extension agent through acquiring required learning experiences. Interaction with extension agent and change in fertilizer application, have made a socio-operational diode to estimate change dynamics as recorded by extension agent.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (\mathbf{X}_1)	0.2587	*
2.	Education (\mathbf{X}_2)	0.0212	
3.	Family Size (X ₃)	0.2961	**
4.	Family Education Status (X ₄)	-0.0043	
5.	No. of Vehicles changed (X_5)	-0.1475	
6.	Change in Consumption of Kerosene (X_6)	-0.2268	*
7.	Change in Consumption of Petrol (X ₇)	-0.0046	
8.	Changing Family Expenditure (X ₈)	-0.1563	
9.	Changing Expenditure Allocation on Farming	0.0484	
	(X ₉)		
10.	Changing Expenditure Allocation on Education	-0.2165	
	(X_{10})		

Table No. 29: Coefficient of Correlation(r): Change in Productivity (Y₅) vs 19 independent variables

11. Changing Expenditure Allocation on Health	-0.0737	
(X ₁₁)		
12. Change in Listening to Radio (X ₁₂)	0.1079	
13. Change in Watching T.V (X ₁₃)	-0.0015	
14. Changing Interaction with Input Dealers (X_{14})	0.2104	
15. Changing Interaction with Extension Agent	0.2475	*
(X ₁₅)		
16. Change in Farm Size (X ₁₆)	-0.2110	
17. Changing Cropping Intensity (X ₁₇)	0.2975	**
18. Changing Cultivable Land (X ₁₈)	-0.1339	
19. Change in Fertilizer Application (X ₁₉)	0.7959	**
r>0.220 significant at p=0.05(*)		
r>0.287 significant at p=0.01(**)		

Table 6 presents the coefficient of correlation between Change in Productivity (Y_5) and 19 independent variables.

Results: It is found that variables like, Age (X_1) , Family Size (X_3) , Changing Interaction with Extension Agent (X_{15}) , Changing Cropping Intensity (X_{17}) , Change in average fertilizer dose (X_{19}) , have recorded positive significant correlation where variable, Change in Consumption of Kerosene (X_6) , have recorded a negative significant correlation with the dependent variable, Change in Productivity (Y_5) .

Model-5

Revelation: Young farmers prefer modern technologies instead of traditional, to get higher production per unit area. Acquiring knowledge on better farming in compliance with change dynamics through interacting with extension agent increases the productivity level. Also higher cropping intensity and balanced fertilizer application, help to attain higher productivity. Higher cropping intensity leads to increase better soil productivity. But those who are consuming more kerosene that means they are traditional, lagging modern technology, are suffering from low productivity.

Sl.	Variables	R	Remarks
No.		value	
1	Age (X ₁)	-0.1347	
2	Education (X ₂)	0.5083	**
3	Family Size (X ₃)	-0.1377	
4	Family Education Status (X ₄)	0.5425	**
5	No. of Vehicles changed (X_5)	-0.0731	
6	Change in Consumption of Kerosene (X ₆)	0.0851	
7	Change in Consumption of Petrol (X ₇)	0.3569	**
8	Changing Family Expenditure (X ₈)	0.8718	**
9	Changing Expenditure Allocation on Farming (X ₉)	-0.2351	*
10	Changing Expenditure Allocation on Education (X_{10})	0.2889	**
11	Changing Expenditure Allocation on Health (X_{11})	0.0296	
13	Change in Listening to Radio (X_{12})	-0.0732	
14	Change in Watching T.V (X_{13})	0.0983	
15	Changing Interaction with Input Dealers (X ₁₄)	-0.1882	
16	Changing Interaction with Extension Agent (X ₁₅)	-0.1012	
17	Change in Farm Size (X ₁₆)	0.2133	
19	Changing Cropping Intensity (X ₁₇)	-0.2157	
19	Changing Cultivable Land (X ₁₈)	0.4225	**
20	Change in Fertilizer Application (X ₁₉)	-0.2011	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 30: Coefficient of Correlation(r): Change in Family income (Y₆) vs 19 independent variables

Table 7 presents the coefficient of correlation between Change in Family income (Y_6) and 19 independent variables.

Social Ecology, Climate Change and, The Coast	al Ecosystem
ISBN: 978-93-85822-01-8	216

Results: It has been found that variables like, Education (X_2) , Family Education Status (X_4) , Change in Consumption of Petrol (X_7) , Changing Family Expenditure (X_8) , Changing Expenditure Allocation on Education (X_{10}) , Changing Cultivable Land (X_{18}) , have shown positive significant correlation & variable, Changing Expenditure Allocation on Farming (X_9) , has shown negative but significant correlation with the dependent variable, Change in Family income (Y_6) .

Model-6

Changing Family Expenditure, X9-Changing Expenditure Allocation on Farming, X10-Changing Expenditure Allocation on Education, X18-Changing Cultivable Land. Y6- Change in Family Income

Revelation: The higher the education, better is the job opportunity, service and better income as well. Higher family education status increases family income through diversified service. Educated farmers prefer modernized farming, which needs higher investments, provide better outcomes. More Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 217 consumption of diesel, refers to more mechanization of farming, which stimulates the income level. Through adopting modernization and mechanization of farming, large farmers, having more land get benefited more.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (X_1)	-0.0034	
2.	Education (\mathbf{X}_2)	0.0631	
3.	Family Size (X ₃)	-0.0256	
4.	Family Education Status (X ₄)	0.1273	
5.	No. of Vehicles changed (X_5)	0.0707	
6.	Change in Consumption of Kerosene (X_6)	0.1337	
7.	Change in Consumption of Petrol (X ₇)	0.0843	
8.	Changing Family Expenditure (X ₈)	0.2097	
9.	Changing Expenditure Allocation on Farming	-0.0087	
	(X9)		
10.	Changing Expenditure Allocation on Education	0.0570	
	(X ₁₀)		
11.	Changing Expenditure Allocation on Health	0.0100	
	(X ₁₁)		
12.	Change in Listening to Radio (X ₁₂)	-0.0157	
13.	Change in Watching T.V (X_{13})	-0.2747	*
14.	Changing Interaction with Input Dealers (X14)	-0.2791	*
15.	Changing Interaction with Extension Agent	-0.2526	*
	(X ₁₅)		
16.	Change in Farm Size (X ₁₆)	0.1844	
17.	Changing Cropping Intensity (X ₁₇)	-0.1319	
18.	Changing Cultivable Land (X ₁₈)	0.3761	**
19.	Change in Fertilizer Application (X ₁₉)	-0.3253	**
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 31: Coefficient of Correlation(r): Change in Weed diversity (Y₆) vs 19 independent variables

Table 31 presents the coefficient of correlation between Change in Weed diversity (Y_7) and 19 independent variables.

Results: It has been found that variables like, Change in Watching T.V (X_{13}) , Changing Interaction with Input Dealers (X_{14}) , Changing Interaction with Extension Agent (X_{15}) , Change in Fertilizer Application (X_{19}) , have exerted negative whereas variable, Changing Cultivable Land (X_{18}) , has exerted positive but significant correlation with the dependent variable, Change in Weed diversity (Y_7) .

Model-7

y7- Change in Weed Diversity

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8

219

Revelation: Watching more Television and interacting with input dealer & with extension agent, make farmers more cosmopolite. That cosmopolite nature helps farmers control the weed diversity through adopting appropriate management. Increase in fertilizer use, decreases weed diversity whereas more the cultivable land, farmer faces more weed attack as well.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (X_1)	0.1138	
2.	Education (X ₂)	0.1187	
3.	Family Size (X ₃)	0.0891	
4.	Family Education Status (X ₄)	0.1915	
5.	No. of Vehicles changed (X_5)	-0.1554	
6.	Change in Consumption of Kerosene (X_6)	0.0423	
7.	Change in Consumption of Petrol (X ₇)	0.1121	
8.	Changing Family Expenditure (X_8)	0.1251	
9.	Changing Expenditure Allocation on Farming (X ₉)	-0.1236	
10.	Changing Expenditure Allocation on Education	0.0509	
	(X ₁₀)		
11.	Changing Expenditure Allocation on Health (X_{11})	-0.0820	
12.	Change in Listening to Radio (X ₁₂)	0.0493	
13.	Change in Watching T.V (X_{13})	-0.2326	*
14.	Changing Interaction with Input Dealers (X_{14})	-0.3367	**
15.	Changing Interaction with Extension Agent (X_{15})	-0.1587	
16.	Change in Farm Size (X ₁₆)	0.1224	
17.	Changing Cropping Intensity (X ₁₇)	-0.0299	
18.	Changing Cultivable Land (X ₁₈)	0.1978	
19.	Change in Fertilizer Application (X ₁₉)	0.1063	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 32: Coefficient of Correlation(r): Change in Crop diseaseintensity (Y8) vs 19 independent variables

Table 9 presents the coefficient of correlation between Change in Crop disease intensity (Y_8) and 19 independent variables.

Social Ecology, Climate Change and, The Coastal	Ecosystem
ISBN: 978-93-85822-01-8	220

Results: Variables like, Change in Watching T.V (X_{13}), Changing Interaction with Input Dealers (X_{14}), have been found, negative but significant correlation with variable, Change in Crop disease intensity (Y_8)

Revelation: More watching of Television and interacting with input dealer, help farmers to widen their knowledge to control disease intensity with respect to climate change perception by taking proper preventive and management practices. More watching of Television and more interacting with input dealer, ultimately lead to decrease in disease infestation.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (X_1)	0.1986	
2.	Education (X ₂)	0.0126	
3.	Family Size (X ₃)	0.1883	
4.	Family Education Status (X ₄)	0.1053	
5.	No. of Vehicles changed (X ₅)	-0.0013	
6.	Change in Consumption of Kerosene (X_6)	-0.1857	
7.	Change in Consumption of Petrol (X ₇)	0.1884	
8.	Changing Family Expenditure (X_8)	0.0300	
9.	Changing Expenditure Allocation on Farming	0.0137	
	(X ₉)		
10.	Changing Expenditure Allocation on Education	-0.0072	
	(X ₁₀)		
11.	Changing Expenditure Allocation on Health	0.1086	
	(X ₁₁)		
12.	Change in Listening to Radio (X ₁₂)	0.0289	
13.	Change in Watching T.V (X_{13})	-0.2062	
14.	Changing Interaction with Input Dealers (X ₁₄)	0.0290	
15.	Changing Interaction with Extension Agent	-0.0031	
	(X ₁₅)		
16.	Change in Farm Size (X ₁₆)	-0.0745	
17.	Changing Cropping Intensity (X_{17})	0.0183	
18.	Changing Cultivable Land (X ₁₈)	-0.0735	
19.	Change in Fertilizer Application (X_{19})	0.4171	**
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 33: Coefficient of Correlation(r): Change in Insect-pestintensity (Y9) vs 19 independent variables

Table 10 presents the coefficient of correlation between Change in Insectpest intensity (Y_9) and 19 independent variables.

Results: It has been found that, variable Change in Fertilizer Application (X_{19}) , has recorded positive significant correlation with dependent variable, Change in Insect-Pest intensity (Y_9) .

Revelation: The increase in fertilizer application, gradually reduces plant resistance to insect-pest attack and makes plant susceptible. So, with increase of fertilizer consumption and increase in adverse effect of climate change, have leaded to emergence of more insect-pest and also increases their resistant to insecticides. This has been a unique perceptual analysis by the respondents.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (\mathbf{X}_1)	-0.1208	
2.	Education (X ₂)	0.1000	
3.	Family Size (X ₃)	0.0657	
4.	Family Education Status (X ₄)	0.1323	
5.	No. of Vehicles changed (X_5)	0.1528	
6.	Change in Consumption of Kerosene (X ₆)	-0.0564	
7.	Change in Consumption of Petrol (X ₇)	0.0925	
8.	Changing Family Expenditure (X ₈)	0.2054	
9.	Changing Expenditure Allocation on Farming	-0.1817	
	(X ₉)		
10.	Changing Expenditure Allocation on	0.2231	*
	Education(X ₁₀)		
11.	Changing Expenditure Allocation on Health	0.1568	
	(X ₁₁)		
12.	Change in Listening to Radio (X ₁₂)	0.0656	
13.	Change in Watching T.V (X_{13})	-0.0115	
14.	Changing Interaction with Input Dealers (X_{14})	0.0723	
15.	Changing Interaction with Extension Agent	0.0458	
	(X ₁₅)		
16.	Change in Farm Size (X ₁₆)	0.0849	
17.	Changing Cropping Intensity (X ₁₇)	0.0238	
18.	Changing Cultivable Land (X ₁₈)	0.2612	*
19.	Change in Fertilizer Application (X ₁₉)	0.0353	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 34: Coefficient of Correlation(r): Perceived Climate chan	ge
effect (Y ₁₀) vs 19 independent variables	-

Table 11 presents the coefficient of correlation between Perceived Climate change effect (Y_{10}) and 19 independent variables.

Results: It has been found that two variables, Changing Expenditure Allocation on Education (X_{10}) and Changing Cultivable Land (X_{18}) , have

Social Ecology, Climate Change and, The Coastal	Ecosystem
ISBN: 978-93-85822-01-8	224

positive significant correlation with the dependent variable, Perceived Climate change effect (Y_{10}) .

X10- Changing Expenditure Allocation on Education, X18- Change in Cultivable land Y10- Perceived Climate Change Effect

Revelation: The change in expenditure allocation on education and cultivable land, have exerted positive effect on perceived climate change. Educated people have better perceptual effect of climate change. Large farmers are getting more affected by the effect of climate change due to more loss and brunt as evinced by the perceptual analysis of the respondents.

Sl.	Variables	R	Remarks
No.		value	
1.	Age (\mathbf{X}_1)	-0.3094	**
2.	Education (\mathbf{X}_2)	0.0495	
3.	Family Size (X ₃)	-0.0097	
4.	Family Education Status (X ₄)	0.1180	
5.	No. of Vehicles changed (X_5)	0.1471	
6.	Change in Consumption of Kerosene (X_6)	-0.0955	
7.	Change in Consumption of Petrol (X ₇)	0.1292	
8.	Changing Family Expenditure (X_8)	0.1310	
9.	Changing Expenditure Allocation on Farming	-0.1248	
	(X ₉)		
10.	Changing Expenditure Allocation on Education	0.3081	**
	(X ₁₀)		
11.	Changing Expenditure Allocation on Health	0.1103	
	(X ₁₁)		
12.	Change in Listening to Radio (X ₁₂)	-0.0555	
13.	Change in Watching T.V (X_{13})	0.0656	
14.	Changing Interaction with Input Dealers (X ₁₄)	0.1007	
15.	Changing Interaction with Extension Agent	0.0206	
	(X ₁₅)		
16.	Change in Farm Size (X ₁₆)	0.1215	
17.	Changing Cropping Intensity (X ₁₇)	-0.0499	
18.	Changing Cultivable Land (X ₁₈)	0.1394	
19.	Change in Fertilizer Application (X ₁₉)	-0.0494	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table No. 35: Coefficient of Correlation(r): Perceived Climate changi	ing
effect on Agriculture (Y ₁₁) vs 19 independent variables	

Table 12 presents the coefficient of correlation between Perceived Climate change effect on Agriculture (Y_{11}) and 19 independent variables.

Results: It has been found that variable, Age (X_1) , has recorded strong negative significant correlation whereas variable, Changing Expenditure Allocation on Education (X_{10}) , has recorded positive significant correlation with dependent variable, Perceived Climate change effect on Agriculture (Y_{11}) .

Model-11

Revelation: The young farmers are recognising effect of climate change on agriculture more than old age. Increasing expenditure on education leads to higher education and better perception on climate change effect on agriculture. Older traditional farmers are unable to recognise the brunt of

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 227

climate change on agriculture. So, Age and Expenditure Allocation on Education, are two vital factor to estimate perception on climate change.

8.2 REGRESSION ANALYSIS

Table 36: Regression analysis: Change in Perceived effect of Radio (Y1)vs 19 causal variables (X1.X19)Multiple R sq- 0.6772

S.L. No.	Variables	Beta	Beta x R	Reg. coef. B	S, error B	t value
1.	Age (X ₁)	0.098	1.055	0.024	0.025	0.955
2.	Education (X ₂)	0.061	-1.793	0.035	0.077	0.459
3.	Family Size (X ₃)	- 0.064	10123	-0.072	0.109	0.659
4.	Family Education Status (X ₄)	- 0.133	6.086	-0.139	0.148	0.934
5.	No. of Vehicles changed (X ₅)	- 0.061	2.053	-0.169	0.268	0.631
6.	Change in Consumption of Kerosene (X ₆)	- 0.182	-8.209	-0.356	0.206	1.728
7.	Change in Consumption of Petrol (X ₇)	- 0.176	9.320	-0.040	0.026	1.566
8.	Changing Family Expenditure (X ₈)	0.037	-1.222	0.000	0.001	0.289
9.	Changing Expenditure Allocation on Farming (X ₉)	- 0.111	1.308	-0.024	0.022	1.102
10	Changing Expenditure Allocation on Education (X ₁₀)	0.115	-1.144	0.033	0.031	1.065
11	Changing Expenditure Allocation on Health (X ₁₁)	- 0.072	-0.209	-0.031	0.036	0.857

				-		
12	Change in Listening to	0.674	72.555	0.047	0.006	7.621
	Radio (X_{12})					
13	Change in Watching T.V	-	19.752	-0.027	0.010	2.591
	(X ₁₃)	0.266				
14	Changing Interaction with	0.085	-0.602	0.096	0.110	0.879
	Input Dealers (X_{14})					
15	Changing Interaction with	0.104	-1.287	0.095	0.090	1.056
	Extension Agent (X_{15})					
16	Change in Farm Size (X ₁₆)	-	1.132	-0.811	0.828	0.979
		0.101				
17	Changing Cropping	-	-0.110	-0.009	0.007	1.280
	Intensity (X_{17})	0.107				
18	Changing Cultivable Land	0.005	-0.102	0.017	0.424	0.041
	(X ₁₈)					
19	Change in Fertilizer	-	0.294	-0.012	0.009	1.266
	Application (X ₁₉)	0.121				

The table 13 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Perceived effect of Radio (Y_1) .

Revelation: It has been found that two variables, Change in Listening to Radio (X_{12}), Change in Watching T.V (X_{13}), have contributed the highest variance to the consequent variable Change in Perceived effect of Radio (Y_1). This result is in well compliance with the coefficient of correlation as well. Change in Listening to Radio (X_{12}), has the highest contribution i.e. 72.56% whereas variable, Change in Watching T.V (X_{13}), has contributed 19.75% to the changing perceived effect of Radio (Y_1). More change in listening to radio is the cause of higher perceived effect of radio whereas less preference of Television increases perceived effect of radio.

So, these two variables can be indicator variables to measure the changing perceived effect of radio. The R-sq vale is 0.6772 which implies that with the combination of 19 exogenous variables, 67.72% of variance embedded in consequent variable Change in Perceived effect of Radio (y1).

Step-down Regression analysis

Multiple R sq= 0.5807

Variable	Beta	t-value
Change in Listening to Radio (X_{12})	0.628	7.750
Change in Watching T.V (X_{13})	-0.243	2.999

Model-12

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error B	value
1.	Age (X ₁)	-	6.928	-0.028	0.018	1.556
2.	Education (X ₂)	0.150	2.723	0.027	0.057	0.474
3.	Family Size (X ₃)	- 0.003	-0.003	-0.002	0.080	0.029
4.	Family Education Status (X ₄)	- 0.069	-3.031	-0.054	0.109	0.497
5.	No. of Vehicles changed (X ₅)	- 0.028	-1.159	-0.059	0.197	0.300
6.	Change in Consumption of Kerosene (X_6)	- 0.011	0.655	-0.016	0.151	0.106
7.	Change in Consumption of Petrol (X ₇)	0.063	3.052	0.011	0.019	0.571
8.	ChangingFamilyExpenditure (X_8)	0.104	3.606	0.000	0.000	0.829
9.	Changing Expenditure Allocation on Farming (X ₉)	0.096	0.146	0.016	0.016	0.969
10	ChangingExpenditureAllocationon (X_{10})	- 0.023	-0.753	-0.005	0.023	0.218
11	Changing Expenditure Allocation on Health (X ₁₁)	0.136	2.050	0.043	0.026	1.646
12	Change in Listening to Radio (X_{12})	- 0.201	13.646	-0.010	0.005	2.326
13	Change in Watching T.V (X_{13})	0.608	67.594	0.046	0.008	6.062

Table 37: Regression analysis: Change in Perceived effect of T.V. (Y2) vs19 causal variables (X1.X19)Multiple R sq.- 0.6910

14	Changing Interaction with	0.029	1.079	0.025	0.080	0.306
	Input Dealers (X_{14})					
15	Changing Interaction with	0.060	3.005	0.041	0.066	0.617
	Extension Agent (X_{15})					
16	Change in Farm Size (X_{16})	0.090	0.986	0.543	0.608	0.893
17	Changing Cropping	0.040	0.022	0.003	0.005	0.483
	Intensity (X ₁₇)					
18	Changing Cultivable Land	-	-1.115	-0.205	0.311	0.659
	(X_{18})	0.079				
19	Change in Fertilizer	0.060	0.569	0.004	0.007	0.640
	Application (X_{19})					

The table 14 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Perceived effect of T.V. (Y_2) .

Result: It has been found that variables, Change in Listening to Radio (X_{12}) , Change in Watching T.V (X_{13}) have contributed respectively to the extent of 13.65% & 67.59% of the variance to the consequent variable, Change in Perceived effect of T.V. (Y_2) .

Revelation: Watching Television in changing and modernizing social ecology of rural Odisha, has prompted to better perception on change dynamics. It is less in case of listening to Radio.

So, these two variables can be indicator variables to measure the Change in Perceived effect of T.V. (Y_2) . The R-sq vale is 0.6910 which implies that, with the combination of 19 exogenous variables, 69.10% of variance embedded in consequent variable i.e. Change in Perceived effect of T.V. (Y_2) .

Step-down Regression analysis

Multiple R sq=0.6404

Variable	Beta	t-value
Changing Expenditure Allocation on Health (X ₁₁)	0.152	2.210
Change in Listening to Radio (X_{12})	-0.185	2.446
Change in Watching T.V (X_{13})	0.700	9.256

Model-13

Table 38: Regression analysis: Change in Perceived effect of Input dealer (Y₃) vs 19 causal variables (X₁.X₁₉) Multiple R sq.- 0.5355

S.L. No.	Variables	Beta	Beta x R	Reg. coef. B	S, error B	t value
1.	Age (X ₁)	-0.057	-0.619	-0.011	0.024	0.466
2.	Education (X ₂)	-0.223	4.841	-0.106	0.076	1.391

-						
3.	Family Size (X ₃)	0.118	5.727	0.109	0.108	1.003
4.	Family Education Status	0.129	-3.405	0.110	0.147	0.752
	(X ₄)					
5.	No. of Vehicles	0.045	0.493	0.102	0.264	0.385
	changed (X ₅)					
6.	Change in Consumption	0.028	-0.757	0.045	0.404	0.221
	of Kerosene (X ₆)					
7.	Change in Consumption	-0.075	0.444	-0.014	0.205	0.559
	of Petrol (X ₇)					
8.	Changing Family	-0.026	1.085	0.000	0.001	0.169
	Expenditure (X ₈)					
9.	Changing Expenditure	-0.316	1.723	-0.057	0.022	2.611
	Allocation on Farming					
	(X ₉)					
10	Changing Expenditure	-0.197	1.925	-0.047	0.031	1.518
	Allocation on Education					
	(X ₁₀)					
11	Changing Expenditure	0.161	8.052	0.056	0.035	1.588
	Allocation on Health					
	(X ₁₁)					
12	Change in Listening to	-0.126	2.240	-0.007	0.006	1.189
	Radio (X ₁₂)					
13	Change in Watching	-0.111	0.813	-0.009	0.010	0.905
	T.V (X ₁₃)					
14	Changing Interaction	0.684	76.758	0.639	0.108	5.900
	with Input Dealers (X_{14})					
15	Changing Interaction	-0.106	-2.207	-0.080	0.089	0.896
	with Extension Agent					
	(X ₁₅)					
16	Change in Farm Size	-0.078	3.002	-0.517	0.819	0.632
	(X ₁₆)					
17	Changing Cropping	-0.054	-0.619	-0.004	0.007	0.532
	Intensity (X ₁₇)					
18	Changing Cultivable	-0.046	1.602	-0.130	0.419	0.311
	Land (X ₁₈)					
19	Change in Fertilizer	-0.085	-1.100	-0.007	0.009	0.740
	Application (X ₁₉)					

The table 15 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Perceived effect of Input dealer (Y_3).

Result: It has been found that variable, Changing Interaction with Input Dealers (X_{14}) , has contributed 76.76% of variance to the consequent variable Change in Perceived effect of Input dealer (Y_3) .

Revelation: Change in interaction with input dealers result in change in perceived effect of input dealer on change dynamics. More interaction with input dealers, stimulates the knowledge of farmers in input management with respect to change pattern that implies higher perceived effect of Input dealer.

So, this variable can be indicator variable as to measure the Change in Perceived effect of Input dealer (Y_3) . The R-sq. vale is 0.5355 which implies that 53.55% of variance embedded inconsequent variable i.e. Change in Perceived effect of Input dealer (Y_3) with the combination of 19 exogenous variables.

Step-down Regression analysis Multiple R sq.= 0.3611

Variable	Beta	t-value
Changing Interaction with Input Dealers (X_{14})	0.601	6.639

Model-14

Table 39: Regression analysis: Change in Perceived effect of Extension
agent (y4) vs 19 causal variables (X1.X19)Multiple R sq.- 0.4845

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error	value
					В	
1.	Age (\mathbf{X}_1)	0.004	0.004	0.001	0.016	0.034
2.	Education (X_2)	-0.018	-0.096	-0.005	0.051	0.105
3.	Family Size (X ₃)	0.068	1.519	0.040	0.073	0.553
4.	Family Education Status	0.026	0.151	0.014	0.098	0.143
	(X ₄)					
5.	No. of Vehicles changed	0.051	1.336	0.075	0.178	0.419
	(X ₅)					
6.	Change in Consumption of	0.099	-3.061	0.101	0.137	0.739
	Kerosene (X ₆)					
7.	Change in Consumption of	-0.087	-0.572	-0.010	0.017	0.613
	Petrol (X ₇)					
8.	Changing Family	-0.049	0.372	0.000	0.000	0.302
	Expenditure (X ₈)					

9.	Changing Expenditure	-0.088	-0.623	-0.010	0.015	0.690
	Allocation on Farming (X ₉)					
10	Changing Expenditure	-0.149	0.474	-0.022	0.021	1.090
	Allocation on Education					
	(X ₁₀)					
11.	Changing Expenditure	0.060	-0.230	0.013	0.024	0.561
	Allocation on Health (X_{11})					
12	Change in Listening to	0.126	0.318	0.005	0.004	1.131
	Radio (X ₁₂)					
13	Change in Watching T.V	0.349	22.908	0.018	0.007	2.692
	(X ₁₃)					
14	Changing Interaction with	-0.119	-4.245	-0.071	0.073	0.970
	Input Dealers (X14)					
15	Changing Interaction with	0.343	35.846	0.165	0.060	2.748
	Extension Agent (X_{15})					
16	Change in Farm Size (X ₁₆)	-0.017	0.050	-0.071	0.549	0.130
17.	Changing Cropping	-0.107	-0.351	-0.005	0.005	1.006
	Intensity (X_{17})					
18	Changing Cultivable Land	0.163	2.239	0.297	0.281	1.057
	(X ₁₈)					
19	Change in Fertilizer	0.431	43.960	0.022	0.006	3.554
	Application (X_{19})					

The table 16 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Perceived effect of Extension agent (Y_4) .

Result: It has been found that, two variables, Changing Interaction with Extension Agent (X_{15}), Change in Fertilizer Application (X_{19}), have recorded substantive impact on Change in Perceived effect of Extension agent (Y_4), respectively contributed 43.96% & 35.85% of variance in Change in Perceived effect of Extension agent (Y_4).

Revelation: Change pattern in fertilizer use and change in interaction with extension agent have contributed in generating perception on change pattern

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 237

recorded by extension agent. Increasing fertilizer use leads to more investment, which make farmer more protective with respects climate change scenario.

The R-sq. vale is 0.4845, which implies that with the combination of 19 exogenous variables, 48.45% of variance embedded with consequent variable i.e. Change in Perceived effect of Extension agent (Y_4) .

Step-down Regression analysis Multip	Multiple R sq.= 0.4007		
Variable	Beta	t-value	
Change in Watching T.V (X_{13})	0.214	2.279	
Changing Interaction with Extension Agent (X_{15})	0.292	2.856	
Change in Fertilizer Application (X ₁₉)	0.374	3.850	

Model-15

O T	X7 . • 1 1	Data		D.	G	4
S.L.	variables	Beta	Beta x	Keg.	5,	t la
190.			ĸ	coel. B	error B	value
1.	Age (X ₁)	0.091	3.213	0.029	0.030	0.980
2.	Education (X_2)	0.052	0.150	0.040	0.093	0.429
3.	Family Size (X ₃)	0.075	3.025	0.112	0.132	0.844
4.	Family Education Status (X_4)	0.034	-0.020	0.047	0.179	0.263
5.	No. of Vehicles changed (X_5)	-0.181	3.646	-0.669	0.324	2.063
6.	Change in Consumption of Kerosene (X_6)	-0.164	5.067	-0.425	0.249	1.706
7.	Change in Consumption of Petrol (X ₇)	-0.120	0.075	-0.037	0.031	1.172
8.	Changing Family Expenditure (X ₈)	-0.006	0.125	0.000	0.001	0.050
9.	Changing Expenditure Allocation on Farming (X ₉)	-0.091	-0.598	-0.026	0.027	0.989
10	Changing Expenditure Allocation on Education (X ₁₀)	-0.249	7.365	-0.095	0.038	2.538
11	ChangingExpenditureAllocationon(X11)	0.002	-0.017	0.001	0.043	0.022
12	Change in Listening to Radio (X_{12})	0.121	1.780	0.011	0.007	1.505
13	Change in Watching T.V (X ₁₃)	0.127	-0.025	0.017	0.012	1.362
14	Changing Interaction with Input Dealers (X ₁₄)	0.003	0.091	0.005	0.132	0.036
15	Changing Interaction with Extension Agent (X_{15})	-0.043	-1.460	-0.053	0.109	0.481

Table 40: Regression analysis: Change in Productivity (Y5) vs 19 causal
variables (X1.X19)Multiple R sq.- 0.7332

16	Change in Farm Size	-0.053	1.532	-0.570	1.001	0.569
	(X ₁₆)					
17	Changing Cropping	0.063	2.568	0.007	0.009	0.830
	Intensity (X ₁₇)					
18	Changing Cultivable Land	0.146	-2.672	0.674	0.513	1.315
	(X ₁₈)					
19	Change in Fertilizer	0.703	76.157	0.092	0.011	8.046
	Application (X_{19})					

The table 17 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Productivity (Y_5).

Result: It has been found that the variables like Expenditure Allocation on Education (X_{10}), Change in Fertilizer Application (X_{19}), have contributed to the extent of 7.37 percent and 76.16 percent of variance to the total R sq. value.

Revelation: Change in fertilizer application affect the production and productivity level of field crops. Day by day, higher in fertilizer application results the higher productivity. Change in expenditure on education leads to change in knowledge level. Acquiring more knowledge on new technologies and methods, increases the productivity level.

Therefore these two variables can be indicator variables to measure the Change in Productivity level. The R-sq. value is 0.7332 which implies that with the combination of 19 exogenous variables, 73.32% of variance embedded in consequent variable, Change in Productivity (Y_5).

Step-down Regression analysis Multiple R Sq.= 0.6615

Variable	Beta	t-value
Changing Expenditure Allocation on Education (X_{10})	-0.168	2.522
Change in average fertilizer dose (X_{19})	0.785	11.823

Model-16

Table 41: Regression analysis: Change in Family income (Y6) vs 19causal variables (X1.X19)Multiple R sq.- 0.8273

S.L.	Variables	Beta	Beta x	Reg.	S, error	t vəlue
1.	Age (\mathbf{X}_1)	-0.019	0.308	-2.663	10.540	0.253
2.	Education (X ₂)	0.074	4.529	24.845	32.978	0.753

3.	Family Size (X ₃)	0.040	-0.659	25.947	46.829	0.554
4.	Family Education	0.063	4.109	38.181	63.482	0.601
	Status (X ₄)					
5.	No. of Vehicles	-0.113	0.995	-182.78	114.707	1.593
	changed (X ₅)					
6.	Change in	0.054	0.551	61.073	88.080	0.693
	Consumption of					
	Kerosene (X_6)	0.1.60	=	21 001	11.01.5	1.050
7.	Change in	-0.163	-7.023	-21.801	11.015	1.979
	Consumption of Petrol					
0	(A7) Changing Equily	0.020	06.090	2 7 9 1	0.295	0 772
0.	$ \begin{array}{l} \text{Changing} & \text{Family} \\ \text{Expanditure} (\mathbf{V}_{a}) \end{array} $	0.920	90.980	2.781	0.283	9.775
9	Changing Expenditure	0.014	-0.39/	1 778	9.457	0 188
).	Allocation on Farming	0.017	-0.374	1.770	7.737	0.100
	(\mathbf{X}_{0})					
10	Changing Expenditure	-0.006	-0.197	-0.946	13.270	0.071
	Allocation on					
	Education (X ₁₀)					
11	Changing Expenditure	0.047	0.167	11.550	15.248	0.757
	Allocation on Health					
	(X ₁₁)					
12	Change in Listening to	0.055	-0.486	2.231	2.625	0.850
10	Radio (X_{12})	0.010	0.100	0.604	4.440	0 1 7 7
13	Change in Watching	0.012	0.138	0.684	4.419	0.155
1.4	$\frac{1.V(\mathbf{X}_{13})}{C}$	0.021	0.496	14154	46.962	0.202
14	Changing Interaction	0.021	-0.486	14.154	46.863	0.302
	(\mathbf{X}_{i})					
15	Changing Interaction	-0.034	0.420	-18 325	38.616	0 475
15	with Extension Agent	0.001	0.120	10.525	50.010	0.175
	(X ₁₅)					
16	Change in Farm Size	0.002	0.058	10.632	354.183	0.030
	(X ₁₆)					
17	Changing Cropping	-0.091	2.381	-4.662	3.132	1.489
	Intensity (X ₁₇)					

18	Changing	Cultivable	-0.040	-2.041	-81.011	181.480	0.446
19	Change in	Fertilizer	-0.027	0.651	-1.539	4.032	0.382
	Application	(X ₁₉)					

The table 18 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Family income (Y_6).

Result: It has been found that the variable, Changing Family Expenditure (X_8) , has contributed to the extent of 96.98 percent of variance to the consequent variable, Change in Family income (Y_6) .

Revelation: Changing Family expenditure is the reflection of changing family income. More family expenditure that includes expenditure on education, food, health, farming etc. results getting of good service, good health, good production, which generates higher family income.

So, Changing Family Expenditure is an indicator variable for the measurement of changing family income. The R-sq. value is 0.8273, which implies that with the combination of 19 exogenous variables, 82.73% of variance embedded in consequent variable, Change in Family income (Y_6).

Step-down	Regression	analysis	Multiple R sq.= 0.8065
·····			· · · · · · · · · · · · · · · · · · ·

Variable	Beta	t-value
Education (X_2)	0.130	2.139
No. of Vehicles changed (X_5)	-0.142	2.752
Change in Consumption of Petrol (X ₇)	-0.159	2.557
Changing Family Expenditure (X ₈)	0.902	13.999

Model-17

Table 42: Regression analysis: Change in Weed diversity (Y7) vs 19
causal variables (X1.X19)Multiple R sq.- 0.3972

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error	value
					B	
1.	Age (X_1)	0.014	-0.012	0.011	0.115	0.097
2.	Education (X_2)	0.009	0.137	0.017	0.360	0.047
3.	Family Size (X ₃)	-0.037	0.238	-0.142	0.512	0.277
4.	Family Education Status	0.200	6.422	0.714	0.694	1.029
	(X ₄)					
5.	No. of Vehicles changed	0.059	1.046	0.558	1.254	0.445
	(X ₅)					

6.	Change in Consumption of Kerosene (X_6)	0.037	1.260	0.250	0.963	0.259
7.	Change in Consumption of Petrol (X_7)	0.160	3.390	0.125	0.120	1.040
8.	Changing Family Expenditure (X ₈)	-0.219	-11.581	-0.004	0.003	1.246
9.	Changing Expenditure Allocation on Farming (X ₉)	0.124	-0.272	0.093	0.103	0.901
10	Changing Expenditure Allocation on Education (X ₁₀)	0.070	1.007	0.069	0.145	0.475
11	Changing Expenditure Allocation on Health (X ₁₁)	0.062	0.155	0.089	0.167	0.536
12	Change in Listening to Radio (X ₁₂)	-0.094	0.370	-0.022	0.029	0.776
13	Change in Watching T.V (X ₁₃)	-0.400	27.665	-0.138	0.048	2.854
14	Changing Interaction with Input Dealers (X ₁₄)	-0.154	10.821	-0.597	0.512	1.166
15	Changing Interaction with Extension Agent (X ₁₅)	-0.033	2.099	-0.103	0.422	0.244
16	Change in Farm Size (X ₁₆)	-0.102	-4.733	-2.806	3.871	0.745
17	Changing Cropping Intensity (X ₁₇)	-0.021	0.689	-0.006	0.034	0.181
18	Changing Cultivable Land (X ₁₈)	0.463	43.807	5.485	1.984	2.765
19	Change in Fertilizer Application (X_{19})	-0.214	17.491	-0.072	0.044	1.629

The table 19 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective dependent variable, Change in Weed diversity (Y_7) .

Result: It has been found that the variable, Changing Cultivable Land (X_{18}) , Change in Watching T.V (X_{13}) & Change in Fertilizer Application (X_{19}) , have contributed respectively to the extent of 43.81%, 27.67% & 17.49% of variance to the consequent variable, Change in Weed diversity (Y_7) .

Revelation: More the change in cultivable land, the higher is the cause of frequent weed diversity i.e. the large farmers face the problem more of weed diversity than small farmers. With the more watching T.V. increases outlook on the growth of weed diversity in relation to change dynamics that enables farmer to take precautions, which decreases the weed diversity. Adequate fertilizer application in proper time minimizes the weed diversity in relation to climate change.

Therefore, these three variables, Changing Cultivable Land, Change in Watching T.V and Change in average fertilizer dose can be key indicators to measure change in weed diversity. The R-sq. value is 0.3972 which implies that 39.72% of variance embedded in consequent variable, Change in Weed diversity (Y₇) with the combination of 19 exogenous variables.

Step-down Regression analysis

Multiple R sq.= 0.3063

Variable	Beta	t-value
Change in Watching T.V (X_{13})	-0.309	3.210
Changing Cultivable Land (X ₁₈)	0.369	3.778
Change in Fertilizer Application (X ₁₉)	-0.254	2.617

Model-18

Table 43: Regression analysis: Change in Crop Disease intensity (Y8) vs19 causal variables (X1.X19)Multiple R sq.- 0.3328

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error	value
					В	
1.	Age (X_1)	0.106	3.620	0.087	0.121	0.720
2.	Education (X ₂)	0.108	3.851	0.213	0.279	0.561
3.	Family Size (X ₃)	0.050	1.331	0.191	0.538	0.354
4.	Family Education Status	0.185	10.628	0.658	0.730	0.902
	(X ₄)					
5.	No. of Vehicles changed	-0.147	6.885	-1.200	1.319	1.061
	(X ₅)					
6.	Change in Consumption	-0.142	-1.804	-0.948	1.013	0.936
	of Kerosene (X ₆)					
7.	Change in Consumption	0.120	0.054	0.094	0.127	0.745
	of Petrol (X ₇)					

8.	Changing Family	-0.243	-9.128	-0.004	0.003	1.313
	Expenditure (X_8)					
9.	Changing Expenditure	0.050	-1.839	0.037	0.109	0.342
	Allocation on Farming					
	(X ₉)					
10	Changing Expenditure	0.130	1.986	0.127	0.153	0.835
	Allocation on Education					
	(X ₁₀)					
11	Changing Expenditure	-0.023	0.573	-0.034	0.175	0.192
	Allocation on Health					
	(X ₁₁)					
12	Change in Listening to	-0.021	-0.310	-0.005	0.030	0.164
	Radio (X ₁₂)					
13	Change in Watching T.V	-0.316	22.072	-0.109	0.051	2.143
	(X ₁₃)					
14	Changing Interaction with	-0.359	36.301	-1.392	0.539	2.583
	Input Dealers (X ₁₄)					
15	Changing Interaction with	0.025	-1.172	0.077	0.444	0.173
	Extension Agent (X ₁₅)					
16	Change in Farm Size	0.032	1.185	0.887	4.072	0.218
	(X ₁₆)					
17	Changing Cropping	-0.060	0.540	-0.018	0.036	0.498
	Intensity (X ₁₇)					
18	Changing Cultivable Land	0.267	15.888	3.169	2.086	1.519
	(X ₁₈)					
19	Change in Fertilizer	0.167	5.348	0.056	0.046	1.214
	Application (X_{19})					

The table 20 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective consequent variable, Change in Crop Disease intensity (Y_8).

Result: It has been found that the variable, Changing Interaction with Input Dealers (X_{14}) , Change in Watching T.V (X_{13}) , Changing Cultivable Land (X_{18}) , have contributed respectively to the extent of 36.30%, 22.07% &

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 248

Results and Discussion

15.89% of variance to the consequent variable, Change in Crop Disease intensity (Y_8) .

Revelation: The increased interaction with input dealer is the cause of less occurrence of disease intensity. Farmers with more linkage with input dealer effectively control the disease intensity with respect to climate change by taking proper protective measurements. Watching Television, stimulates knowledge in relation to change dynamics that enables farmer to take precautions, which decreases the disease intensity. More the change in cultivable land, becomes the cause of more the occurrence of crop disease i.e. the large farmers face more the problem of crop Disease intensity than small farmers.

Therefore, these three variables, V, Change in Watching T.V & Changing Cultivable Land, can be key indicators to measure change in weed diversity. The R-sq. value is 0.3328 which implies that 33.28% of variance embedded in consequent variable, Change in Crop Disease intensity (Y_8) with the combination of 19 exogenous variables.

Step-down Regression analysis Multiple R sq. = 0.1980

Variable	Beta	t-value
Family Education Status (X ₄)	0.256	2.307
Change in Watching T.V (X_{13})	-0.266	2.367
Changing Interaction with Input Dealers (X_{14})	-0.259	2.428

Model-19

Table 44: Regression analysis: Change in Insect-pest intensity (Y9) vs 19
causal variables (X1-X19)Multiple R sq. - 0.4119

S.L.	Variables	Beta	Beta x	Reg.	S, error	t
No.			R	coef. B	В	value
1.	Age (\mathbf{X}_1)	0.023	1.086	0.016	0.099	0.163
2.	Education (\mathbf{X}_2)	-	-0.589	-0.330	0.310	1.066
		0.193				
3.	Family Size (X ₃)	-	-1.950	-0.142	0.440	0.324
		0.043				
4.	Family Education Status (X ₄)	0.188	4.815	0.584	0.596	0.979
5.	No. of Vehicles changed (X_5)	0.077	-0.024	0.632	1.077	0.587
6.	Change in Consumption of	-	12.287	-1.581	0.827	1.912
	Kerosene (X ₆)	0.272				
7.	Change in Consumption of	0.174	7.985	0.119	0.103	1.146
	Petrol (X ₇)					
8.	Changing Family	0.031	0.223	0.000	0.003	0.176
	Expenditure (X ₈)					
9.	Changing Expenditure	0.052	0.174	0.034	0.089	0.386
	Allocation on Farming (X ₉)					

10	Changing Expenditure	0.132	-0.231	0.112	0.125	0.901
10	Allocation on Education	0.132	0.201	0.112	0.120	0.901
	(\mathbf{X}_{10})					
11	Changing Expenditure	0.105	2 760	0.132	0.143	0.919
11	Allocation on Health (X ₁₁)	0.105	2.700	0.152	0.145	0.717
12	Change in Listening to Padio	0.003	0.021	0.001	0.025	0.025
12	(\mathbf{X}_{ij})	0.005	0.021	0.001	0.025	0.025
12	(A12) Change in Watching TV		18 007	0.114	0.041	2 7 4 2
15	(\mathbf{X})	-	10.997	-0.114	0.041	2.742
	(A ₁₃)	0.379				
14	Changing Interaction with	-	-0.391	-0.187	0.440	0.426
	Input Dealers (X ₁₄)	0.056				
15	Changing Interaction with	-	0.142	-0.506	0.362	1.396
	Extension Agent (X_{15})	0.186				
16	Change in Farm Size (X ₁₆)	0.073	-1.320	1.747	30.325	0.525
17	Changing Cropping Intensity	-	-0.972	-0.057	0.029	1.930
	(X ₁₇)	0.219				
18	Changing Cultivable Land	-	2.016	-1.164	1.704	0.684
	(X ₁₈)	0.113				
19	Change in Fertilizer	0.543	54.999	0.159	0.038	4.195
	Application (X ₁₉)					

The table 21 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective dependent variable, Change in Insect-pest intensity (Y₉).

Result: It has been found that the variables, Change in Fertilizer Application (X_{19}) & Change in Watching T.V (X_{13}) have contributed respectively to the extent of 55% & 18.98% of variance to the consequent variable, Change in Insect-pest intensity (Y_9) .

Revelation: The increase in fertilizer application gradually reduces plant resistance to insect-pest attack tends to enhance insect-pest population and increases more need of insecticide application. With the more watching of Television, it increases sensitization on the growth of insect-pest in relation

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 251

to change dynamics that enables farmer to take precautions, which decreases the insect-pest intensity.

Therefore, these two variables, Change in average fertilizer dose & Change in Watching T.V can be key indicators to measure changing insect-pest intensity. The R-sq. value is 0.4119, it is to imply that with the combination of 19 exogenous variables, 41.19% of variance embedded in consequent variable, Change in Insect-pest intensity (Y_9).

Step-down Regression analysis Multiple R sq. = 0.2663

Variable	Beta	t-value
Consumption of Kerosene (X_6)	-0.237	2.143
Watching T.V (X_{13})	-0.316	2.920
Change in average fertilizer dose (X_{19})	0.377	3.743

Model-20

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error	value
					B	
	Age (X_1)	-0.110	7.196	-0.084	0.124	0.676
	Education (X ₂)	-0.161	-8.702	-0.294	0.389	0.755
	Family Size (X ₃)	0.031	1.106	0.111	0.553	0.200
	Family Education Status	0.126	9.019	0.416	0.750	0.555
	(X_4)					
	No. of Vehicles changed	0.130	10.752	1.144	1.354	0.845
	(X_5)					
	Change in Consumption of	-0.008	0.259	-0.053	1.040	0.051
	Kerosene (X_6)					
	Change in Consumption of	-0.017	-0.837	-0.012	0.130	0.093
	Petrol (X ₇)					
	Changing Family	0.126	14.068	0.002	0.003	0.617
	Expenditure (X_8)					
	Changing Expenditure	-0.148	14.555	-0.103	0.112	0.922
	Allocation on Farming					
	(X ₉)					
	Changing Expenditure	0.018	2.131	0.016	0.157	0.102
	Allocation on Education					
	(X_{10})					
	Changing Expenditure	0.144	12.254	0.193	0.180	1.075
	Allocation on Health (X_{11})					
	Change in Listening to	0.105	3.750	0.023	0.031	0.749
	Radio (X_{12})					
	Change in Watching T.V	-0.115	0.716	-0.037	0.052	0.703
	(X_{13})					
	Changing Interaction with	0.098	3.825	0.351	0.553	0.635
	Input Dealers (X ₁₄)					
	Changing Interaction with	-0.008	-0.201	-0.024	0.456	0.052
	Extension Agent (X_{15})					
	Change in Farm Size (X_{16})	-0.081	-3.719	-2.064	4.182	0.494

Table 45: Regression analysis: PerceivedClimate change effect (Y_{10}) vs19 causal variables $(X_1.X_{19})$ Multiple R sq. - 0.1844

Changing Cropping	-0.040	-0.518	-0.011	0.037	0.301
Intensity (X_{17})					
Changing Cultivable Land	0.230	32.517	2.528	2.143	1.180
(X_{18})					
Change in Fertilizer	0.095	1.828	0.030	0.048	0.626
Application (X_{19})					

The table 22 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective dependent variable, Perceived Climate change effect (Y_{10}).

Result: It has been found that the variable, Changing Cultivable Land (X_{18}) , has contributed 32.52% variance to the consequent variable, Perceived Climate change effect (Y_{10}) .

Revelation: Large farmers face more the brunt of climate change. Farmers who are investing more, are getting affected largely by the effect of climate change.

So, changing cultivable land can be key indicator to measure Climate change effect .The R-sq. value is 0.1844, it is to imply that with the combination of 19 exogenous variables, 18.44% of variance embedded in consequent variable, Perceived Climate change effect (Y_{10}).

Step-down Regression analysis Multiple R sq. = 0.0682

Variable	Beta	t-value
Cultivable Land (X_{18})	0.261	2.390

Model-21

Table 46: Regression analysis: Perceived Climate change effect on Agriculture (Y_{11}) vs 19 causal variables $(X_1.X_{19})$ Multiple R sq. - 0.2467

S.L.	Variables	Beta	Beta x	Reg.	S,	t
No.			R	coef. B	error	value
					B	
1.	Age (\mathbf{X}_1)	-0.391	49.051	-0.349	0.139	2.505
2.	Education (\mathbf{X}_2)	-0.337	-6.763	-0.720	0.436	1.651
3.	Family Size (X ₃)	-0.003	0.013	-0.014	0.620	0.022
4.	Family Education Status	0.137	6.547	0.528	0.840	0.629
	(X ₄)					
5.	No. of Vehicles changed	0.069	4.113	0.709	1.518	0.467
	(X ₅)					
6.	Change in Consumption	-0.057	2.217	-0.414	1.166	0.355
	of Kerosene (X ₆)					

7.	Change in Consumption of Petrol (X ₇)	0.133	6.970	0.113	0.146	0.775
8.	Changing Family Expenditure (X ₈)	0.075	3.991	0.001	0.004	0.382
9.	Changing Expenditure Allocation on Farming (X ₉)	0.057	-2.889	0.046	0.125	0.371
10	Changing Expenditure Allocation on Education (X ₁₀)	0.268	33.499	0.285	0.176	1.624
11	Changing Expenditure Allocation on Health (X ₁₁)	0.047	2.118	0.074	0.202	0.368
12	Change in Listening to Radio (X ₁₂)	-0.041	0.918	-0.011	0.035	0.302
13	Change in Watching T.V (X ₁₃)	-0.195	-5.170	-0.073	0.058	1.242
14	Changing Interaction with Input Dealers (X ₁₄)	0.137	5.596	0.576	0.620	0.929
15	Changing Interaction with Extension Agent (X ₁₅)	-0.098	-0.821	-0.333	0.511	0.651
16	Change in Farm Size (X ₁₆)	0.031	1.517	0.918	4.687	0.196
17	Changing Cropping Intensity (X ₁₇)	-0.139	2.809	-0.045	0.041	1.083
18	Changing Cultivable Land (X ₁₈)	-0.028	-1.603	-0.364	2.402	0.152
19	Change in Fertilizer Application (X ₁₉)	0.106	-2.112	0.038	0.053	0.720

The table 23 presents the Regression Analysis to estimate the causal effects of 19 exogenous variables on the respective dependent variable, Perceived Climate change effect on Agriculture (Y_{11}) .

Result: It has been found that the variables, Age (X_1) & Changing Expenditure Allocation on Education (X_{10}) have contributed respectively 49.05% & 33.50% variance to the consequent variable, Perceived Climate change effect on Agriculture (Y_{11}) .

Revelation: Climate change largely affects to agriculture due to its dependency on natural resources. Climate change is a crucial factor in the development of agriculture. Old age farmers can't realize about the effect of climate change on agriculture, whereas perceived climate change effect is more in young farmers. Higher expenditure on education i.e. more the education, more they know about climate change. Young educated farmers are more aware of climate change and they have adequate perception on effect on agriculture than old age farmers.

So, Age & Changing Expenditure Allocation on Education can be key indicators to measure perceived Climate change effect on Agriculture. The R-sq. value is 0.2467, it is to imply that, 24.67% of variance embedded in consequent variable, Perceived Climate change effect on Agriculture (Y_{11}) with the combination of 19 exogenous variables.

Step-down Regression analysis Multiple R sq.= 0.1451

Variable	Beta	t-value
Age (X1)	-0.236	2.125
Changing Expenditure Allocation on Education (X_{10})	0.234	2.108

Model-22

8.3 PATH ANALYSIS

Table 47: Path Analysis: Direct, Indirect and Residual effect; Change in Perceived Effect of Radio (Y₁) Vs 19 Exogenous Variables (X₁.X₁₉)

Variables	Total Effect (r)	Direct Effect (DE)	Indirect Effect (IE)=r-	Highest Indirect Effect
			DE	
Age (\mathbf{X}_1)	0.0732	0.0976	-0.0244	$0.0795(X_{13})$
Education (X_2)	-0.1978	0.0614	-0.2592	-0.1036(X ₄)
Family Size (X ₃)	-0.1182	-0.0644	-0.0538	$0.0646(X_6)$
Family Education Status (X ₄)	-0.3099	-0.1330	-0.1769	-0.1050(X ₇)
No. of Vehicles changed (X ₅)	-0.2280	-0.0610	-0.1670	$-0.135\overline{6(X_{12})}$

Kesiduai enect= 0.5228	Residual	effect=	0.3228
------------------------	----------	---------	--------

Change in Consumption of	0.3047	-0.1825	0.4872	$0.2685(X_{12})$
Kerosene (X ₆)				
Change in Consumption of	-0.3584	-0.1761	-0.1823	$-0.1606(X_{12})$
Petrol (X ₇)				
Changing Family	-0.2227	0.0372	-0.2599	-0.1363(X ₁₂)
Expenditure (X_8)				
Changing Expenditure	-0.0797	-0.1111	0.0314	$-0.0651(X_{10})$
Allocation on Farming (X ₉)				
Changing Expenditure	-0.0673	0.1151	-0.1824	$-0.0779(X_{13})$
Allocation on Education				
(X ₁₀)				
Changing Expenditure	0.0195	-0.0723	0.0918	0.0185(X ₁₄)
Allocation on Health (X_{11})				
Change in Listening to Radio	0.7292	0.6739	0.0553	$0.1101(X_{13})$
(X ₁₂)				
Change in Watching T.V	-0.5035	-0.2657	-0.2378	$-0.2792(X_{12})$
(X ₁₃)				
Changing Interaction with	-0.0480	0.0850	-0.1330	-0.0739(X ₁₂)
Input Dealers (X ₁₄)				
Changing Interaction with	-0.0835	0.1044	-0.1879	$-0.0840(X_{13})$
Extension Agent (X_{15})				
Change in Farm Size (X ₁₆)	-0.0761	-0.1008	0.0247	$-0.0307(X_6)$
Changing Cropping Intensity	0.0069	-0.1073	0.1142	$0.0696(X_{12})$
(X ₁₇)				
Changing Cultivable Land	-0.1371	0.0050	-0.1421	-0.0579(X ₁₆)
(X ₁₈)				
Change in Fertilizer	-0.0164	-0.1214	0.1050	$0.0419(X_{12})$
Application (X ₁₉)				

Table 24, explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Perceived Effect of Radio (Y_1) .

It has been found that the variable, Change in Listening to Radio (X_{12}) , has exerted the highest Direct Effect while Change in Consumption of Kerosene (X_6) , has exerted the Highest Indirect Effect.

So, considering these, it can be concluded that the traditional rural people, who are consuming more kerosene to present themselves to traditional diaspora, they are mostly getting impacted by radio.

The variable, Change in Listening to Radio (X_{12}) , has routed the Highest Indirect Effect of 8 exogenous variables to characterise the consequent variable. So, this variable has got tremendous companionship behaviour to characterize the consequent variable, Change in Perceived Effect of Radio (Y_1) .

The residual effect is 0.3228, it is to conclude that even with the combination of 19 exogenous variables, 32.28% of variance embedded with consequent variable, Change in Perceived Effect of Radio (Y_1) , couldn't be expressed.

Model-23

Table 48: Path Analysis: Direct, Indirect and Residual effect; Change in Perceived Effect of T.V. (Y₂) Vs 19 Exogenous Variables (X₁.X₁₉) Residual effect= 0.3090

Variables	Total	Direct	Indirect	Highest
	Effect	Effect	Effect	Indirect
	(r)	(DE)	(IE)=r-	Effect
			DE	
Age (\mathbf{X}_1)	-0.3076	-0.1556	-0.1520	-0.1820(X13)
Education (X_2)	0.3033	0.0620	0.2413	0.1813(X13)
Family Size (X ₃)	0.0082	-0.0028	0.0110	-0.0411(X1)
Family Education Status	0.3023	-0.0693	0.3716	0.2033(X13)
(X ₄)				
No. of Vehicles changed	0.2818	-0.0284	0.3102	0.2038(X13)
(X ₅)				
Change in Consumption of	-0.4136	-0.0109	-0.4027	-0.2515(X13)
Kerosene (X ₆)				
Change in Consumption of	0.3356	0.0629	0.2727	0.1978(X13)
Petrol (X ₇)				
Changing Family	0.2386	0.1045	0.1341	0.1228(X13)
Expenditure (X ₈)				
Changing Expenditure	0.0106	0.0955	-0.0849	-0.0431(X13)
Allocation on Farming (X ₉)				
Changing Expenditure	0.2257	-0.0230	0.2487	0.1782(X13)
Allocation on Education				
(X ₁₀)				
Changing Expenditure	0.1043	0.1358	-0.0315	0.1358(X11)
Allocation on Health (X_{11})				
Change in Listening to	-0.4686	-0.2012	-0.2674	-0.2520(X13)
Radio (X ₁₂)				
Change in Watching T.V	0.7681	0.6081	0.1600	0.6081(X13)
(X ₁₃)				
Changing Interaction with	0.2572	0.0290	0.2282	0.1215(X13)
Input Dealers (X ₁₄)				
Changing Interaction with	0.3481	0.0596	0.2885	0.1922(X13)
Extension Agent (X ₁₅)				
Change in Farm Size (X ₁₆)	0.0758	0.0899	-0.0141	0.0899(X16)

Changing Cropping	0.0039	0.0396	-0.0357	0.0396(X17)
Intensity (X ₁₇)				
Changing Cultivable Land	0.0976	-0.0789	0.1765	-0.0789(X18)
(X ₁₈)				
Change in Fertilizer	0.0655	0.0601	0.0054	0.0601(X19)
Application (X ₁₉)				

Table 25 explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Perceived Effect of T.V. (Y_2) .

It has been found that the variable, Change in Watching T.V (X_{13}), has exerted the highest Direct Effect while Change in Consumption of Kerosene (X_6), has exerted the Highest Indirect Effect. So, considering these, it can be concluded that the apparently modern people, who are consuming less kerosene and watching Television more, are getting mostly impacted by Television.

The variable, Change in Watching Television (X_{13}) , has routed the Highest Indirect Effect of 13 exogenous variables to characterise the consequent variable. So, this variable has got tremendous companionship behaviour to characterize the consequent variable, Change in Perceived Effect of T.V. (Y_2) .

The residual effect is 0.3090, it is to conclude that even with the combination of 19 exogenous variables, 30.90% of variance embedded with consequent variable, Change in Perceived Effect of T.V. (Y_2) , couldn't be expressed.

Model-24

Table 49: Path Analysis: Direct, Indirect and Residual effect; Change inPerceived Effect of Input dealer (Y3) Vs 19 Exogenous Variables (X1.

X19)

Residual effect= 0.4645								
Variables	Total Effect	Direct Effect	Indirect Effect	Highest Indirect				
	(r)	(DE)	(IE)=r-	Effect				
			DE					
Age (\mathbf{X}_1)	0.0580	-0.0571	0.1151	0.0897(X2)				
Education (X_2)	-0.1161	-0.2232	0.1071	0.1002(X4)				
Family Size (X ₃)	0.2609	0.1175	0.1434	0.2162(X14)				
Family Education Status (X ₄)	-0.1418	0.1286	-0.2704	-0.1739(X2)				
No. of Vehicles changed (X_5)	0.0591	0.0447	0.0144	0.1390(X14)				
Change in Consumption of	-0.1450	0.0279	-0.1729	-0.2259(X14)				
Kerosene (X ₆)								
Change in Consumption of	-0.0315	-0.0755	0.0440	-0.0992(X2)				
Petrol (X ₇)								

Changing Family Expenditure	-0.2231	-0.0260	-0.1971	-0.1145(X2)
(X ₈)				
Changing Expenditure	-0.0292	-0.3157	0.2865	0.1513(X14)
Allocation on Farming (X ₉)				
Changing Expenditure	-0.0524	-0.1969	0.1445	0.1786(X9)
Allocation on Education (X_{10})				
Changing Expenditure	0.2683	0.1607	0.1076	0.1489(X14)
Allocation on Health (X_{11})				
Change in Listening to Radio	-0.0951	-0.1261	0.0310	-0.0750(X14)
(X ₁₂)				
Change in Watching T.V (X ₁₃)	-0.0391	-0.1113	0.0722	0.1367(X14)
Changing Interaction with Input	0.6009	0.6841	-0.0832	-0.0698(X9)
Dealers (X ₁₄)				
Changing Interaction with	0.1112	-0.1063	0.2175	0.3074(X14)
Extension Agent (X ₁₅)				
Change in Farm Size (X_{16})	-0.2061	-0.0780	-0.1281	-0.1437(X14)
Changing Cropping Intensity	0.0619	-0.0535	0.1154	0.0989(X14)
(X ₁₇)				
Changing Cultivable Land (X_{18})	-0.1879	-0.0457	-0.1422	-0.0830(X14)
Change in Fertilizer	0.0692	-0.0851	0.1543	0.1980(X14)
Application (X ₁₉)				

Table 26 explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Perceived Effect of Input dealer (Y_3) .

It has been found that the variable, Changing Interaction with Input Dealers (X_{14}) , has exerted the highest Direct Effect while Changing Expenditure Allocation on Farming (X_9) , has exerted the Highest Indirect Effect. More the Changes in interaction with input dealer, more the perceived effects of input dealer in relation to change dynamics. More expenditure allocation on farming makes farmer more protective towards his outcome that makes him

getting indirectly affected by the effect of input dealer for better management & better production.

The variable, Changing Interaction with Input Dealers (X_{14}) , has routed the Highest Indirect Effect of 12 exogenous variables to characterise the consequent variable, Change in Perceived Effect of Input dealer (Y_3) .

The residual effect is 0.4645, it is to conclude that even with the combination of 19 exogenous variables, 46.45% of variance embedded with consequent variable, Change in Perceived Effect Input dealer (Y_3) , couldn't be expressed.

Model-25

Table 50: Path Analysis: Direct, Indirect and Residual effect; Change in Perceived Effect of Extension agent (Y₄) Vs 19 Exogenous Variables Residual effect=0.5155

Variables	Total	Direct	Indire	Highest
	Effect	Effect	ct	Indirect
	(r)	(DE)	Effect	Effect
			(IE)=r-	
			DE	
Age (X_1)	0.0042	0.0044	-0.0002	-
				0.1044(X13
)
Education (X_2)	0.0263	-	0.0440	0.1040(X13
		0.0177)
Family Size (X ₃)	0.1079	0.0682	0.0397	0.1162(X19
)
Family Education Status (X ₄)	0.0284	0.0257	0.0027	0.1166(X13
)
No. of Vehicles changed (X ₅)	0.1265	0.0512	0.0753	0.1169(X13
)
Change in Consumption of Kerosene	-	0.0986	-0.2491	-
(X ₆)	0.1505			0.1442(X13
)
Change in Consumption of Petrol	0.0318	-	0.1189	0.1134(X13
(X ₇)		0.0871)
Changing Family Expenditure (X ₈)	-	-	0.0124	0.0866(X18
	0.0367	0.0491)
Changing Expenditure Allocation on	0.0343	-	0.1222	0.0842(X10
Farming (X ₉)		0.0879)
Changing Expenditure Allocation on	-	-	0.1335	0.1022(X13
Education (X ₁₀)	0.0154	0.1489)
Changing Expenditure Allocation on	-	0.0598	-0.0784	-
Health (\mathbf{X}_{11})	0.0186			0.0350(X10
)
Change in Listening to Radio (X_{12})	0.0122	0.1264	-0.1142	-
				0.1445(X13
)

Change in Watching T.V (X_{13})	0.3183	0.3488	-0.0305	0.1085(X15
)
Changing Interaction with Input	0.1735	-	0.2920	0.1543(X15
Dealers (X ₁₄)		0.1185)
Changing Interaction with Extension	0.5060	0.3433	0.1627	0.1102(X13
Agent (\mathbf{X}_{15}))
Change in Farm Size (X ₁₆)	-	-	0.0027	0.0939(X18
	0.0142	0.0169)
Changing Cropping Intensity (X ₁₇)	0.0160	-	0.1226	0.1389(X19
		0.1066)
Changing Cultivable Land (X ₁₈)	0.0664	0.1635	-0.0971	-
				0.0722(X19
)
Change in Fertilizer Application	0.4944	0.4308	0.0636	0.1343(X15
(X ₁₉))

Table 27 explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Perceived Effect of Extension agent (Y_4) .

Variable, Change in Fertilizer Application (X_{19}) , has exerted the highest Direct Effect while Changing Interaction with Input Dealers (X_{14}) , has exerted the Highest Indirect Effect. With change in fertilizer use, the change in perceived effect of extension agent with respect to change pattern, changes. Change in interaction with input dealer has the highest indirect effect on changing effect of extension agent. Aware and risk taking farmers are applying more fertilizer to increase their production ad they have better link with extension agent for effective farming. So, cosmopolite people are getting largely impacted by the effect of extension agent on the perception on change dynamics.

The variable, Change in Watching T.V (X_{13}), finds maximum no. of indirect effect i.e. 9 times on the resultant variable, Change in Perceived Effect of Extension agent (Y_4).

The residual effect is 0.5155, it is to conclude that even with the combination of 19 exogenous variables, 51.55% of variance embedded with consequent variable, Change in Perceived Effect Extension agent (Y_4), couldn't be expressed.

Model-26

Table 51: Path Analysis: Direct, Indirect and Residual effect; Change in
Productivity (Y ₅) Vs 19 Exogenous Variables (X ₁ .X ₁₉)
Residual effect= 0.2668

Variables	Total	Direct	Indirect	Highest
	Effect	Effect	Effect	Indirect
	(r)	(DE)	(IE)=r-DE	Effect
Age (X_1)	0.2587	0.0911	0.1676	0.1532(X19)
Education (X_2)	0.0212	0.0521	-0.0309	-0.0583(X10)
Family Size (X ₃)	0.2961	0.0749	0.2212	0.1892(X19)
Family Education Status	-0.0043	0.0341	-0.0384	-0.0780(X10)
(X ₄)				
No. of Vehicles changed	-0.1475	-0.1813	0.0338	0.0755(X6)
(X ₅)				
Change in Consumption	-0.2268	-0.1638	-0.0630	-0.1477(X19)
of Kerosene (X ₆)				
Change in Consumption	-0.0046	-0.1199	0.1153	0.0597(X6)
of Petrol (X ₇)				
Changing Family	-0.1563	-0.0058	-0.1505	-0.1100(X19)
Expenditure (X ₈)				
Changing Expenditure	0.0484	-0.0906	0.1390	0.1411(X10)
Allocation on Farming				
(X ₉)				
Changing Expenditure	-0.2165	-0.2495	0.0330	0.05132(X9)
Allocation on Education				
(X ₁₀)				
Changing Expenditure	-0.0737	0.0017	-0.0754	-0.0587(X10)
Allocation on Health				
(X ₁₁)				
Change in Listening to	0.1079	0.1210	-0.0131	-0.0653(X6)
Radio (X ₁₂)				
Change in Watching T.V	-0.0015	0.1270	-0.1285	-0.0731(X10)
(X ₁₃)				
Changing Interaction with	0.2104	0.0032	0.2072	0.2031(X19)
Input Dealers (X ₁₄)				
Changing Interaction with	0.2475	-0.0432	0.2907	0.2745(X19)
Extension Agent (X ₁₅)				

Change in Farm Size	-0.2110	-0.0532	-0.1578	-0.1495(X19)
(X ₁₆)				
Changing Cropping	0.2975	0.0633	0.2342	0.2263(X19)
Intensity (X ₁₇)				
Changing Cultivable	-0.1339	0.1463	-0.2802	-0.1175(X18)
Land (X ₁₈)				
Change in Fertilizer	0.7959	0.7016	0.0943	0.0345(X6)
Application (X ₁₉)				

Table 28 explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Productivity (Y_5) .

The table elucidates that variable, Change in Fertilizer Application (X_{19}) , has exerted the highest Direct Effect, whereas Changing Interaction with Extension agent (X_{15}) , has exerted the Highest Indirect Effect on consequent variable. Increase in fertilizer application, increases the productivity level. So, it has got a direct effect on productivity. More interaction with extension agent makes the farmers capable of acquiring new information and modern technologies, by the help of which more productivity can be attained.

The variable, Change in average fertilizer dose (X_{19}) , finds maximum no. of indirect effect i.e. 8 times on the resultant variable, Change in Productivity (Y_5) .

The residual effect is 0.2668, it is to conclude that even with the combination of 19 exogenous variables, 26.88% of variance embedded with consequent variable, Change in Productivity (Y₅), couldn't be expressed.

Model-27

Table 52: Path Analysis: Direct, Indirect and Residual effect; Change in Family income (Y₆) Vs 19 Exogenous Variables (X₁.X₁₉) Residual effect= 0.1727

Variables	Total	Direct	Indirect	Highest
	Effect	Effect	Effect	Indirect
	(r)	(DE)	(IE)=r-	Effect
			DE	
Age (\mathbf{X}_1)	-0.1347	-0.0189	-0.1158	-0.1093(X8)
Education (X_2)	0.5083	0.0737	0.4346	0.4723(X8)
Family Size (X ₃)	-0.1377	0.0396	-0.1773	-0.0676(X8)
Family Education Status (X ₄)	0.5425	0.0627	0.4798	0.5409(X8)
No. of Vehicles changed (X_5)	-0.0731	-0.1126	0.0395	0.0822(X8)
Change in Consumption of	0.0851	0.0535	0.0316	-0.0833(X8)
Kerosene (X ₆)				
Change in Consumption of	0.3569	-0.1628	0.5197	0.4902(X8)
Petrol (X ₇)				
Changing Family Expenditure	0.8718	0.9203	-0.0485	-0.0867(X7)
(X ₈)				

Changing Expenditure	-0.2351	0.0139	-0.2490	-0.1932(X8)
Allocation on Farming (X ₉)				
Changing Expenditure	0.2889	-0.0056	0.2945	0.3072(X8)
Allocation on Education (X_{10})				
Changing Expenditure	0.0296	0.0467	-0.0171	-0.012(X17)
Allocation on Health (X_{11})				
Change in Listening to Radio	-0.0732	0.0550	-0.1282	-0.1861(X8)
(X ₁₂)				
Change in Watching T.V (X_{13})	0.0983	0.0116	0.0867	0.1858(X8)
Changing Interaction with Input	-0.1882	0.0213	-0.2095	-0.1358(X8)
Dealers (X ₁₄)				
Changing Interaction with	-0.1012	-0.0343	-0.0669	-0.0228(X7)
Extension Agent (X ₁₅)				
Change in Farm Size (X ₁₆)	0.2133	0.0023	0.2110	0.1848(X8)
Changing Cropping Intensity	-0.2157	-0.0913	-0.1244	-0.1280(X8)
(X ₁₇)				
Changing Cultivable Land (X ₁₈)	0.4225	-0.0400	0.4625	0.4874(X8)
Change in Fertilizer Application	-0.2011	-0.0268	-0.1743	-0.1443(X8)
(X ₁₉)				

Table 29 explains the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Family income (Y_6) .

The table has elucidated that, variable, Change in Consumption of Petrol (X_7) has recorded the Highest Direct Effect while variable, and Changing Family Expenditure (X_8) has recorded Highest Indirect Effect on the consequent variable, Change in Family income (Y_6) .

Increase in family expenditure on education, health, farming etc., increases family income through better service, better health, better production etc. More expenditure in farming enables farmers to adopt modern agriculture. More consumption of petrol refers to more mechanized farming, more

market linkage and more cosmopolite nature, which are in a conglomeration, indirectly helps to increase the income level and farmers' standard of living with respect to change dynamics.

The variable, Changing Family Expenditure (X8), has routed the Highest Indirect Effect of 16 exogenous variables to characterise the consequent variable, Change in Family income (Y_6). So, variable, Changing Family Expenditure is a crucial factor to determine the family income.

The Residual Effect being 0.1727, it is to infer that 17.27% portion of variance embedded in the consequent variable, Change in Family income (Y₆), could not be explained.

Model-28

Table 53: Path Analysis: Direct, Indirect and Residual effect; Change in
Weed diversity (Y ₇) Vs 19 Exogenous Variables (X ₁ .X ₁₉)
Residual effect- 0.6028

Variables	Total	Direct	Indirect	Highest
	Effect	Effect	Effect	Indirect
	(r)	(DE)	(IE)=r-	Effect
			DE	
Age (X_1)	-0.0034	0.0136	-0.0170	0.1197(X13)
Education (\mathbf{X}_2)	0.0631	0.0086	0.0545	0.1561(X4)
Family Size (X ₃)	-0.0256	-0.0369	0.0113	-0.0576(X19)
Family Education Status	0.1273	0.2004	-0.0731	-0.1337(X13)
(X ₄)				
No. of Vehicles changed	0.0707	0.0588	0.0119	-0.1340(X13)
(X ₅)				
Change in Consumption	0.1337	0.0374	0.0963	0.1654 (X13)
of Kerosene (X ₆)				
Change in Consumption	0.0843	0.1598	-0.0755	-0.1301(X13)
of Petrol (X ₇)				
Changing Family	0.2097	-0.2193	0.4290	0.2450(X18)
Expenditure (X_8)				
Changing Expenditure	-0.0087	0.1241	-0.1328	-0.0671(X18)
Allocation on Farming				
(X ₉)				
Changing Expenditure	0.0570	0.0702	-0.0132	0.1425(X18)
Allocation on Education				
(X ₁₀)				
Changing Expenditure	0.0100	0.0618	-0.0518	-0.0433(X18)
Allocation on Health (X_{11})				
Change in Listening to	-0.0157	-0.0938	0.0781	0.1657(X13)
Radio (X ₁₂)				
Change in Watching T.V	-0.2747	-0.4000	0.1253	0.0670(X4)
(X ₁₃)				
Changing Interaction with	-0.2791	-0.1540	-0.1251	-0.0799(X13)
Input Dealers (X ₁₄)				
Changing Interaction with	-0.2526	-0.0330	-0.2196	-0.1264(X13)
Extension Agent (X ₁₅)				
Change in Farm Size (X ₁₆)	0.1844	-0.1019	0.2863	0.2656(X18)
--	---------	---------	---------	--------------
Changing Cropping	-0.1319	-0.0208	-0.1111	-0.0689(X19)
Intensity (X_{17})				
Changing Cultivable Land	0.3761	0.4626	-0.0865	-0.1161(X8)
(X ₁₈)				
Change in Fertilizer	-0.3253	-0.2136	-0.1117	-0.0775(X18)
Application (X_{19})				

Table 30 shows the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Weed diversity (Y_7) .

From the table, variable, Changing Cultivable Land (X_{18}) , has recorded the Highest Direct Effect while variable, Changing Family Expenditure (X_8) , has recorded Highest Indirect Effect on the consequent variable, Change in Weed diversity (Y_7) .

Change in cultivable land, has a direct effect on change in weed diversity, as more the cultivable land, more the farmer suffers from the effect of weed diversity. Large farmers are getting more affected in compare to small farmers by the effect of weed diversity due to bigger possession. Higher family expenditure leads to more investing in controlling weed diversity which minimises the weed infestation.

The variable, Change in Watching T.V (X_{13}), has routed the Highest Indirect Effect of 8 exogenous variables to characterise the consequent variable, Change in Weed diversity (Y_7). More watching Television leads to acquiring more knowledge to control the weed infestation, which ultimately helps in decreasing weed diversity.

The Residual Effect being 0.6028, it is to infer that a huge portion of variance (60.28%) in the consequent variable could not be explained. So, it would be more effective if more numbers of variable are included.

Model-29

Table 54: Path Analysis: Direct, Indirect and Residual effect;Change in Crop Disease intensity (Y₈) Vs 19 Exogenous Variables (X₁.X₁₉) Residual effect= 0.6672

Variables	Total Effect (r)	Direct Effect (DE)	Indirect Effect (IE)=r- DE	Highest Indirect Effect
Age (X ₁)	0.1138	0.1059	0.0079	0.0945(X13)
Education (X ₂)	0.1187	0.1080	0.0107	0.1439(X4)
Family Size (X ₃)	0.0891	0.0497	0.0394	-0.1134(X14)
Family Education Status	0.1915	0.1847	0.0068	-0.1429(X8)
(X ₄)				

No. of Vehicles changed	-0.1554	-0.1475	-0.0079	-0.1058(X13)
(X ₅)				
Change in Consumption of	0.0423	-0.1420	0.1843	0.1306(X13)
Kerosene (X ₆)				
Change in Consumption of	0.1121	0.1204	-0.0083	-0.1295(X8)
Petrol (X ₇)				
Changing Family	0.1251	-0.2431	0.3682	0.1416(X18)
Expenditure (X ₈)				
Changing Expenditure	-0.1236	0.0495	-0.1731	-0.0794(X14)
Allocation on Farming (X ₉)				
Changing Expenditure	0.0509	0.1298	-0.0789	-0.0926(X13)
Allocation on Education				
(X ₁₀)				
Changing Expenditure	-0.0820	-0.0233	-0.0587	-0.0781(X14)
Allocation on Health (X_{11})				
Change in Listening to	0.0493	-0.0209	0.0702	0.1309(X13)
Radio (X ₁₂)				
Change in Watching T.V	-0.2326	-0.3159	0.0833	-0.0717(X14)
(X ₁₃)				
Changing Interaction with	-0.3367	-0.3589	0.0222	-0.0631(X13)
Input Dealers (X ₁₄)				
Changing Interaction with	-0.1587	0.0246	-0.1833	-0.1613(X13)
Extension Agent (X ₁₅)				
Change in Farm Size (X ₁₆)	0.1224	0.0322	0.0902	0.1535(X18)
Changing Cropping	-0.0299	-0.0600	0.0301	0.0540(X19)
Intensity (X ₁₇)				
Changing Cultivable Land	0.1978	0.2673	-0.0695	-0.1287(X8)
(X ₁₈)				
Change in Fertilizer	0.1063	0.1674	-0.0611	-0.1039(X14)
Application (X ₁₉)				

Table 31 shows the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Crop Disease intensity (Y_8) .

It has been found that variable, Changing Interaction with Input Dealers (X_{14}) , has recorded the Highest Direct Effect while variable, Changing Family Expenditure (X_8) , has recorded Highest Indirect Effect on the consequent variable, Change in Crop Disease intensity (Y_8) .

Interaction with input dealer, stimulates farmer to control crop disease infestation effectively by taking appropriate preventive and management practices. Input dealers guide farmers to effectively control the disease infestation. Higher family expenditure leads to more investing in controlling crop disease infestation which indirectly helps in decreasing the disease intensity.

The variable, Change in Watching T.V (X_{13}), has routed the Highest Indirect Effect of 7 exogenous variables to characterise the consequent variable, Change in Crop Disease intensity (Y_8). More watching T.V. leads to more acquiring knowledge to control disease infestation, which ultimately helps in decreasing disease intensity.

The Residual Effect being 0.6672, it is to infer that a huge portion of variance (66.72%) in the consequent variable could not be explained. So, it would be more effective if more numbers of variable are included.

Model-30

Table 55: Path Analysis: Direct, Indirect and Residual effect; Change in Insect-pest intensity (Y₉) Vs 19 Exogenous Variables (X₁.X₁₉) Residual effect= 0.5881

Variables	Total Effect	Direct Effect	Indirect Effect	Highest Indirect
	(r)	(DE)	(IE)=r-	Effect
			DE	
Age (\mathbf{X}_1)	0.1986	0.0225	0.1761	0.1186(X19)
Education (X ₂)	0.0126	-0.1925	0.2051	0.1467(X4)
Family Size (X ₃)	0.1883	-0.0427	0.2310	0.1464(X19)
Family Education Status (X ₄)	0.1053	0.1883	-0.0830	-0.1500(X2)
No. of Vehicles changed (X ₅)	-0.0013	0.0766	-0.0779	-0.1272(X13)
Change in Consumption of	-0.1857	-0.2725	0.0868	0.1569(X13)
Kerosene (X ₆)				
Change in Consumption of	0.1884	0.1740	0.0144	-0.1234(X13)
Petrol (X ₇)				

	0.0000	0.0006	0.0006	0 1107/374
Changing Family Expenditure	0.0300	0.0306	-0.0006	0.110/(X4)
(X ₈)				
Changing Expenditure	0.0137	0.0525	-0.0388	-0.0744(X10)
Allocation on Farming (X ₉)				
Changing Expenditure	-0.0072	0.1316	-0.1388	-0.1112(X13)
Allocation on Education (X_{10})				
Changing Expenditure	0.1086	0.1046	0.0040	0.0309(X10)
Allocation on Health (X_{11})				
Change in Listening to Radio	0.0289	0.0029	0.0260	0.1572(X13)
(X ₁₂)				
Change in Watching T.V (X_{13})	-0.2062	-0.3795	0.1733	0.1127(X6)
Changing Interaction with Input	0.0290	-0.0555	0.0845	0.1572(X19)
Dealers (X ₁₄)				
Changing Interaction with	-0.0031	-0.1863	0.1832	0.2125(X19)
Extension Agent (X_{15})				
Change in Farm Size (X ₁₆)	-0.0745	0.0730	-0.1475	-0.1157(X19)
Changing Cropping Intensity	0.0183	-0.2185	0.2368	0.1751(X19)
(X ₁₇)				
Changing Cultivable Land (X ₁₈)	-0.0735	-0.1129	0.0394	-0.0910(X19)
Change in Fertilizer Application	0.4171	0.5430	-0.1259	-0.0729(X15)
(X ₁₉)				

Table 32 shows the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Change in Insect-pest intensity (Y_9) .

The table has elucidated that the variable, Change in Fertilizer Application (X_{19}) , has exerted the Highest Direct Effect while variable, Changing Cropping Intensity (X_{17}) , has recorded the Highest Indirect Effect on the consequent variable, Change in Insect-pest intensity (Y_9) .

Adequate fertilizer application makes plants more susceptible to insect-pest attack in relation to change dynamics. Applying more fertilizer gradually decreases resistance of plants towards attack of insect-pest. With more

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 280

cropping intensity, implies taking of more crops in a land within a cropping year, minimizes insect-pest attack by altering soil character through crop rotation.

The variable, Change in Fertilizer Application (X_{19}) , has recorded the Highest Indirect Effect of 7 exogenous variables to characterise the consequent variable, Change in Insect-pest intensity (Y_9) .

The Residual Effect being 0.5881, it is to conclude that even with combination of 19 exogenous variable, a huge portion of variance (58.81%) embedded with the consequent variable could not be explained. So, it would be more effective if more numbers of variable are included.

Model-31

Table 56: Path Analysis: Direct, Indirect and Residual effect; Perceived
Climate change effect (Y ₁₀) Vs 19 Exogenous Variables
Residual effect- 0.8156

Variables	Total	Direct	Indirect	Highest
	Effect	Effect	Effect	Indirect
	(r)	(DE)	(IE)=r-DE	Effect
Age (X_1)	-0.1208	-0.1099	-0.0109	0.0645(X2)
Education (X ₂)	0.1000	-0.1605	0.2605	0.0980(X4)
Family Size (X ₃)	0.0657	0.0311	0.0346	0.0308(X14)
Family Education Status	0.1323	0.1257	0.0066	-0.1251(X2)
(X ₄)				
No. of Vehicles changed	0.1528	0.1298	0.0230	0.0632(X18)
(X ₅)				
Change in Consumption of	-0.0564	-0.0085	-0.0479	-0.0598(X5)
Kerosene (X ₆)				
Change in Consumption of	0.0925	-0.0167	0.1092	0.0750(X4)
Petrol (X ₇)				
Changing Family	0.2054	0.1263	0.0791	0.1215(X18)
Expenditure (X ₈)				
Changing Expenditure	-0.1817	-0.1477	-0.0340	0.0424(X2)
Allocation on Farming (X ₉)				
Changing Expenditure	0.2231	0.0176	0.2055	0.0835(X9)
Allocation on Education				
(X ₁₀)				
Changing Expenditure	0.1568	0.1441	0.0127	-0.0215(X18)
Allocation on Health (X_{11})				
Change in Listening to	0.0656	0.1053	-0.0397	0.0475(X13)
Radio (X ₁₂)				
Change in Watching T.V	-0.0115	-0.1146	0.1031	-0.0478(X2)
(X ₁₃)				
Changing Interaction with	0.0723	0.0976	-0.0253	-0.0327(X9)
Input Dealers (X ₁₄)				
Changing Interaction with	0.0458	-0.0081	0.0539	0.0438(X14)
Extension Agent (X ₁₅)				
Change in Farm Size (X ₁₆)	0.0849	-0.0807	0.1656	0.1318(X18)

Changing Cropping	0.0238	-0.0401	0.0639	-0.0331(X18)
Intensity (X_{17})				
Changing Cultivable Land	0.2612	0.2295	0.0317	0.0669(X8)
(X ₁₈)				
Change in Fertilizer	0.0353	0.0954	-0.0601	-0.0385(X18)
Application (X_{19})				

Table 33 shows the Path Analysis to elicit the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Perceived Climate change effect (Y_{10}) .

The table has elucidated that variable, Changing Cultivable Land (X_{18}) , has exerted the Highest Direct Effect whereas variable, Education (X_2) , has exerted Highest Indirect Effect on the consequent variable, Perceived Climate change effect (Y_{10}) .

Large farmers are getting more affected by the gross effect of climate change. Due to possession of more land, they receive more risk with respect to climate change in terms of loss due to their high investment. More the education, more a person feels about climate change effect. Illiterate farmers suffer loss due to climate change but they fail to recognise the climate change. Education indirectly affects the perception on climate change or global warming though they perceive high fluctuations in rainfall and temperature.

The variable, Changing Cultivable Land (X_{18}) , has recorded the Highest Indirect Effect of 6 exogenous variables to characterise the consequent variable, Perceived Climate change effect (Y_{10}) . So this variable has got tremendous companionship behaviour to characterize the consequent variable.

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 283

The Residual Effect being 0.8156, it is to conclude that even with combination of 19 exogenous variable, a huge portion of variance (81.56%) embedded with the consequent variable could not be explained. So, it would be more effective if more numbers of variable are included.

Model-32

Table 57: Path Analysis: Direct, Indirect & Residual effect; Perceived Climate change effect on Agriculture (Y₁₁) Vs 19 Exogenous Variables Residual effect- 0.7533

Variables	Total Effect (r)	Direct Effect (DE)	Indirect Effect (IE)=r- DE	Highest Indirect Effect
Age (X ₁)	-0.3094	-0.3912	0.0818	0.1355(X2)
Education (X ₂)	0.0495	-0.3373	0.3868	0.1571(X1)
Family Size (X ₃)	-0.0097	-0.0033	-0.0064	-0.1033(X1)

Family Education Status (X ₄)	0.1180	0.1368	-0.0188	-0.2628(X2)
No. of Vehicles changed (X ₅)	0.1471	0.0690	0.0781	0.0757(X1)
Change in Consumption of	-0.0955	-0.0573	-0.0382	0.0805(X13)
Kerosene (X ₆)				
Change in Consumption of	0.1292	0.1331	-0.0039	-0.1499(X2)
Petrol (X ₇)				
Changing Family Expenditure (X ₈)	0.1310	0.0752	0.0558	-0.1731(X2)
Changing Expenditure Allocation on Farming (X ₉)	-0.1248	-0.0120	-0.1128	-0.1517(X10)
Changing Expenditure Allocation on Education (X_{10})	0.3081	0.2682	0.0399	0.1230(X1)
Changing Expenditure Allocation on Health (X ₁₁)	0.1103	0.0474	0.0629	0.0631(X10)
Change in Listening to Radio (X ₁₂)	-0.0555	-0.0408	-0.0147	0.0806(X13)
Change in Watching T.V (X_{13})	0.0656	-0.1946	0.2602	-0.1005(X2)
Changing Interaction with Input Dealers (X ₁₄)	0.1007	0.1371	-0.0364	-0.0442(X15)
Changing Interaction with Extension Agent (X ₁₅)	0.0206	-0.0984	0.1190	0.0616(X114)
Change in Farm Size (X ₁₆)	0.1215	0.0308	0.0907	0.0862(X1)
Changing Cropping Intensity (X ₁₇)	-0.0499	-0.1388	0.0889	0.0340(X19)
Changing Cultivable Land (X ₁₈)	0.1394	-0.0284	0.1678	0.0826(X10)
Change in Fertilizer Application (X ₁₉)	-0.0494	0.1055	-0.1549	-0.0854(X1)

Table 34 shows the Path Analysis to depict the Total Direct Effect, Total Indirect Effect and Residual Effect of 19 exogenous variables on the consequent variable, Perceived Climate change effect on Agriculture (Y_{11}) .

Social Ecology, Climate Change and, The Coastal Ecosy	ystem
ISBN: 978-93-85822-01-8	285

The table has elucidated that variable, Age (X_1) , has exerted the Highest Direct Effect whereas variable, Education (X_2) , has exerted Highest Indirect Effect on the consequent variable, Perceived Climate change effect on Agriculture (Y_{11}) .

Young farmers are getting more impacted by the perceived climate change effect on agriculture. Due to their better education & better perception, they can efficiently recognise the effect of climate change on agriculture, while the elder farmers have failed to do so. Educated farmers feel the brunt effect of climate change on agriculture. They know the causes and effect of climate change and that's why they are adopting more to modern and appropriate technologies to combat against the brunt of change dynamics. Relatively less literate farmers suffer loss due to climate change but they fail to perceive the climate change effect on agriculture due to lack of knowledge.

The variable, Age (X_1) has recorded the Highest Indirect Effect of 6 exogenous variables to characterise the consequent variable, Perceived Climate change effect on Agriculture (Y_{11}) . So this variable has got tremendous companionship behaviour to characterize the consequent variable.

The Residual Effect being 0.7533, it is to conclude that even with combination of 19 exogenous variable, a huge portion of variance (75.33%) embedded with the consequent variable could not be explained. So, it would be more effective if more numbers of variable are included.

Model-33

8.4 FACTOR ANALYSIS

Fable 58: Factor Analysis	Conglomeration	of 19 variabl	les in 7 factors
----------------------------------	----------------	---------------	------------------

Factors	Variables	Factor	% of	Cumulative	Factors
		Loading	Variance	%	Renamed
	Education (X ₂)	0.729	20.22	20.217	
	Family Education	0.775			
	Status (X ₄)				
	Change in	0.660			E
	Consumption of				ne
	Petrol (X7)	0.725			rgy
Factor	Changing Family				V C
1	Expenditure (X8)	0.536			on
	Changing				sm
	Expenditure	0.606			np
	Allocation on				tio
	Education (X ₁₀)				n
	Change in				
	Watching T.V				
	(X ₁₃)				

· · · · · · · · · · · · · · · · · · ·					
	Family Size (X ₃)	0.534	15.70	35.911	
	Change in	-0.643			
	Consumption of				
Factor	Kerosene (X ₆)	0.433			
2	Changing				
	Expenditure	0.673			C
	Allocation on				om
	Farming (X ₉)	0.585			mu
	Interaction with				Ini
	Input Dealers	-0.514			cat
	(X ₁₄)	0.543			ioi
	Changing				
	Interaction with				letv
	Input Dealers				WO
	(X ₁₄)				rk
	Change in Farm				
	Size (X ₁₆)				
	Change in				
	Fertilizer				
	Application (X ₁₉)				
Factor	No. of Vehicles	-0.476	9.30	45.206	
3	changed (X_5)				
	Age (\mathbf{X}_1)	0.512	6.65	60.261	
Factor	Changing	0.525			Resource
4	Cultivable Land				Status
	(X ₁₈)				
	Changing	-0.624	5.41	71.268	
Factor	Expenditure				
5	Allocation on				
	Health (X ₁₁)				
Faster	Change in	0.559	5.15	76.416	
Factor	Listening to				
0	Radio (\tilde{X}_{12})				
	Changing	0.581	4.12	80.538	
Factor	Cropping				
7	Intensity (X ₁₇)				

Factor 1

Rename: Energy Consumption

Variables accommodated: Education (X_2) , Family Education Status (X_4) , Change in Consumption of Petrol (X_7) , Changing Family Expenditure (X_8) , Changing Expenditure Allocation on Education (X_{10}) , and Change in Watching T.V (X_{13})

Variance contributed: 20.22%

Revelation: This constellation of variables, Energy Consumption, has come up with a strong explicability level for predicting the change pattern of social ecology of Chilika. The change in change in fertilizer consumption... can be conceived as important operational indicator to estimate the change pattern.

Factor 2

Rename: Communication Network

Variables accommodated: Family Size (X_3) , Change in Consumption of Kerosene (X_6) , Changing Expenditure Allocation on Farming (X_9) , Interaction with Input Dealers (X_{14}) , Changing Interaction with Input Dealers (X_{14}) , Change in Farm Size (X_{16}) , Change in Fertilizer application (X_{19})

Variance contributed: 15.70%

Revelation: Communication network, consisting of 7 homogenous variables, has played a vital role in estimating the change pattern of the social ecology of Chilika. Any communication network can go as both sink and source of information and accordingly has contributed substantially towards the variance in the ecological behaviour.

Factor 3

Rename: No. of Vehicles changed (Unchanged)

Variables accommodated: No. of Vehicles changed (X₅)

Variance contributed: 9.30%

Revelation: Since this is a factor with solitary variables, there is no need to rename it. Nevertheless it has contributed 9.30% variance.

Factor 4

Rename: Resource Status

Variables accommodated: Age (X1), Changing Cultivable Land (X18)

Variance contributed: 6.65%

Revelation: This factor, presents the individual possession on different resources contributing to income. Livelihood, productivity. So, logically these are attuned to the pace and direction to the ecological changes and the respondent have elicited it through their perceptual analysis on resource and its subsequent changes over time.

Factor 5

Rename: Changing Expenditure Allocation on Health (Unchanged)

Variables accommodated: Changing Expenditure Allocation on Health (X_{11})

Variance contributed: 5.41%

Revelation: Since this is a factor with solitary variables, there is no need to rename it.

Factor 6

Rename: Change in Listening to Radio (Unchanged)

Variables accommodated: Change in Listening to Radio (X₁₂)

Variance contributed: 5.15%

Revelation: Since this is a factor with solitary variables, there is no need to rename it.

Factor 7

Rename: Changing Cropping Intensity (Unchanged)

Variables accommodated: Changing Cropping Intensity (X₁₇)

Variance contributed: 4.12%

Revelation: Since this is a factor with solitary variables, there is no need to rename it.

Model 34

8.5 Canonical covariates: The interaction and combination

Canonical covariate analysis has been carried out to depict the clandestine interaction and combination between two sets of variable i.e. Left and Right sets of variables. This analysis has got tremendous strategic importance.

Model 35

The model depicts that, from the left side (Set-I) variables (Y), the following consequent variables like, Change in Perceived effect of T.V. (Y₂), Change in Family income (Y₆), Change in Weed diversity (Y₇), Change in Crop Disease intensity (Y₈), Perceived Climate change effect (Y₁₀), Perceived Climate change effect on Agriculture (11), have shown clear choices to select the following exogenous variables i.e. from the right sets of variables like, Education (X₂), Family Education Status (X4), No. of Vehicles changed (X₅), Change in Consumption of Kerosene (X₆), Change

in Consumption of Petrol (X_7), Changing Family Expenditure (X8), Changing Expenditure Allocation on Education (X_{10}), Changing Expenditure Allocation on Health (X_{11}), Change in Watching T.V (X_{13}), Change in Farm Size (X_{16}), Changing Cultivable Land (X_{18}).

The model shows that, at the first stage, the combination of consequent variables, Y₂, Y₆, Y₈, Y₁₀, Y₁₁, can be branded together as Climate Change Perception, that have selectively been ductile to the set of agricultural modernity variables (X₂, X₄, X₅, X₆, X₇, X₈, X₁₀, X₁₁, X₁₃, X₁₆, X₁₈), which again can be collectively branded as Agricultural Modernity and similarly, at the stage 2, the consequent variables like, Change in Perceived Effect of Radio (Y_1) , Change in Perceived Effect of Input dealer (Y_3) , Change in Perceived Effect of Extension agent (Y_4) , Change in Productivity (Y_5) , Change in Insect-pest intensity (Y_9) , have shown clear choices to select the following exogenous variables i.e. from the right sets of variables like, Age (X_1) , Family Size (X_3) , Changing Expenditure Allocation on Farming (X_9) , Change in Listening to Radio (X_{12}) , Changing Interaction with Input Dealers (X_{14}) , Changing Interaction with Extension Agent (X_{15}) , Changing Cropping Intensity (X_{17}) , Change in average fertilizer dose (X_{19}) . It shows that. The combination of left side variables $(Y_1, Y_3, Y_4, Y_5, Y_9)$ can be termed as Cosmopolite Information on Productivity Factor and have been ductile to the following set of right side variables (X₁, X₃, X₉, X₁₂, X₁₄, X₁₅, X_{17} , X_{19}), which again can be branded as Family Resource and Interaction Character.

Year	India	Odisha	Puri
2007-2008	2202.0	1720	1533
2008-2009	2178.0	1553	1207
2009-2010	2129.7	1609	1730
2010-2011	2239	1640	1713
2011-2012	2372	1472	1513

Table 59: Productivity (kg. /ha.) of Rice

Graphical delineation 1

The figure suggests that the productivity of rice throughout Puri and Odisha has been stagnating over the decades mention here. While the same for the national level has also been turned plating.

Rice productivity in the Puri district, has recorded a kind of undulating pattern, where in some of declines are very conspicuous (2007-10) over the others. The fluctuating nature of rice productivity in Puri can well be

attributed to the ecological instability and might be associated with climate change characters.

Year	India	Odisha	Puri
2007-2008	1115	804	1663
2008-2009	1006	848	1570
2009-2010	958	776	1549
2010-2011	1193	828	1646
2011-2012	1133	867	1694

Table 60: Productivity (Kg. /ha.) of Oilseeds

Graphical delineation 2

The figure suggests that the productivity of oilseeds throughout Puri is at better level than stagnating productivity of Odisha over the decades mention here. While the same for the national level has also been turned plating. Still the productivity of coastal district, was fluctuating during 2007, 2008 and 2009 due to erratic climatic factor.

C1		Normal	Actual	Fertilizer	Kharif Rice	
SI.	Year	Rainfall	rainfall	Consumption	Production	Remarks
110.		(mm)	(mm)	(kg/ha.)	(lakh Mts.)	
1	1961	1502.5	1262.8	0.8	36.99	
2	1962	1502.5	1169.9	0.8	36.32	
3	1963	1502.5	1467.0	0.9	42.47	
4	1964	1502.5	1414.1	1.2	43.59	
5	1965	1502.5	997.1	1.9	31.89	Severe drought
6	1966	1502.5	1134.9	2.2	35.37	Drought
7	1967	1502.5	1326.7	3.2	34.43	Cyclone & Flood
8	1968	1502.5	1296.1	3.6	38.48	Cyclone & Flood
9	1969	1502.5	1802.1	3.7	38.39	Flood
10	1970	1502.5	1660.2	4.1	39.13	Flood
11	1971	1502.5	1791.5	7.3	33.76	Flood, Severe Cyclone
12	1972	1502.5	1177.1	8.1	37.35	Drought, flood
13	1973	1502.5	1360.1	8.7	41.91	Flood
14	1974	1502.5	951.2	6.9	29.67	severe drought
15	1975	1502.5	1325.6	6.7	42.74	Flood
16	1976	1502.5	1012.5	8.6	29.58	Severe drought
17	1977	1502.5	1326.9	8.2	40.50	Flood
18	1978	1502.5	1261.3	8.7	41.89	Tornados, hail storm
19	1979	1502.5	950.7	8.3	27.34	Severe drought

Table 61: Rainfall, Fertilizer consumption andKharif Rice Production of Odisha

20	1980	1502.5	1321.7	8.7	40.31	Flood,
						Flood
21	1081	1502.5	1187 /	0.7	36.63	drought
21	1901	1302.3	1107.4	2.1	50.05	Tornado
						High flood
22	1082	1502.5	1170.0	10.4	27.07	drought
22	1902	1302.3	11/9.9	10.4	27.07	cyclone
23	1083	1502.5	137/ 1	10.8	17.63	cyclone
23	1905	1502.5	1202.8	10.8	47.03	Drought
24	1904	1502.5	1502.0	12.7	38.30	Diougin
25	1965	1502.5	1000.8	15.7	48.80	FIOOd
26	1986	1502.5	1500.1	10.4	44.56	G
27	1987	1502.5	1040.8	16.7	31.03	Severe
20	1000	1502 5	1070 5	22	10.06	drought
28	1988	1502.5	12/0.5	22	48.96	
29	1989	1502.5	1283.9	21.7	58.40	
30	1990	1502.5	1865.8	20.1	48.42	Flood
31	1991	1502.5	1465.7	20	60.30	
32	1992	1502.5	1344-1	21.6	49 76	Flood,
52	1772	1302.3	1344.1	21.0	+9.70	drought
33	1993	1502.5	1421.6	21.3	61.02	
34	1994	1502.5	1700.2	22.7	58.31	
35	1995	1502.5	1588.0	24.6	56.48	
26	1006	1502.5	000.1	20.5	28 77	Severe
50	1990	1302.3	990.1	50.5	30.27	drought
37	1997	1502.5	1493.0	35	57.51	
20	1000	1502 5	1077.5	26	40.05	Severe
38	1998	1502.5	1277.5	30	48.85	drought
20	1000	1502 5	1425 7	42	40.75	Severe
39	1999	1502.5	1455.7	42	42.75	Cyclone
40	2000	1502.5	1025 1	4.1	41.72	Drought &
40	2000	1502.5	1055.1	41	41.72	Flood
41	2001	1502.5	1616.2	41	65.71	Flood
42	2002	1502.5	1007.8	39	28.26	
43	2003	1502.5	1663.5	39	61.99	Flood

44	2004	1502.5	1273.6	43	58.84	Moisture stress
45	2005	1502.5	1519.5	46	62.49	Moisture stress
46	2006	1502.5	1682.8	47	61.96	Moisture stress/ Flood
47	2007	1502.5	1591.5	52.1	68.26	Flood
48	2008	1502.5	1523.6	56	60.92	Flood, Moisture stress
49	2009	1502.5	1362.6	58	62.93	Flood /Moisture stress/Pest attack
50	2010	1502.5	1293.0	62	60.51	Drought/ Un- seasonal rain
51	2011	1502.5	1327.8	62.25	51.27	Flood/ Drought
52	2012	1502.5	1391.3	62.5	86.81	Drought
53	2013	1502.5		62		Super Cyclone, Flood

(Source: Status of Agriculture in Odisha, Directorate of Agriculture, Odisha)

Out of 53 years only 13 years have been normal years. This almost puts the state with a 75% probability of being visited by natural calamity of any kind. This has been reflected in the stagnating yield of food crops over the couple of decades, even though the application of fertilizer in crop field is increasing and at the same time, a shift of occupation from farm to nonfarm

economy has been well discernable. This has also negated the positive impact of modern technology in the operating farms.

Graphical delineation-3: Rainfall: 1961-2012

The graphical delineation 1 presents the distribution of rainfall in Odisha. From 1961 to 2012. It shows that baring few couples of years ,rests of the years are suffering from below normal rainfall, specially the cohort 1972-1984, has been consistently suffering from below normal rainfall.

Graphical delineation-4: Kharif rice production: 1961-2012

The graphical delineation 2 presents the two, kharif rice production from 1961 to 2013 and graphical delineation 3 presents the patterns of fertilizer consumption between 1961 to 2008. By taking 2 patterns into consideration, it can be seen that the level of fertilizer consumption has not well been reflected to increase the production of kharif rice. Kharif rice being an

Social Ecology, Climate Change and, The Coastal Ecosystem ISBN: 978-93-85822-01-8 299

inevitable predictant to monsoon rainfall, the gradual erratic nature of monsoon rainfall might have neglected the fertilizer consumption.

Graphical delineation-5: Fertilizer consumption: 1961-2013

From 1967 to 1987, there has been a clear dent of increase in fertilizer consumption but kharif rice production has been plating because if you see into the rainfall pattern of the same period, it was the period of below normal rainfall. So, the dividend from increase fertilizer application on productivity of Aman rice has been neglected by the erratic rainfall.

Year	Share of power consumption for Agriculture Purpose		
	In million units	In %	
1	2	3	
1992-93	305.00	5.6	
1993-94	341.00	5.6	
1994-95	426.00	6.6	
1995-96	491.00	6.5	
1996-97	150.00	2.8	
1997-98	201.00	3.6	
1998-99	258.00	4.8	
1999-00	217.00	3.9	
2000-01	186.00	3.1	
2001-02	164.00	2.8	
2002-03	139.00	2.1	
2003-04	124.00	1.8	
2004-05	147.00	1.9	
2005-06	137.00	1.7	
2006-07	131.00	1.4	
2007-08	132.00	1.2	
2008-09	155.00	1.3	
2009-10	158.00	1.2	
2010-11	188.00	1.4	

Table 62:	Power	consumption	n of	Odisha
-----------	-------	-------------	------	--------

Graphical delineation 6

The power consumption for Irrigation and other practices in Agriculture is in declining trend. Minor irrigation programme cannot be successful without large-scale rural electrification. The share of power consumption for Agriculture Purpose since 1992-93 is indicated above, which indicates the gradual declining of share of power consumption in Agriculture. Low power consumption in agriculture acts as hurdle in adopting the modern agriculture.

Table 63: Annual fish, prawn & crab landing of
Chilika from 1985-86 to 2011-12

Ichthyofaunal diversity is the most important bio-indicator to estimate and elucidate the impact of climate change in a given ecosystem. The present study has estimated this by calculating the volume of fish landing from different years (1985-2012). A list of fish biodiversity has also been annextured in addition to fish landing data.

YEAR	Fish (t.)	Prawn (t.)	Total	Crab	Total Landing
			(Fish+Prawn)	(t .)	in t.
1985-86	7446.00	1144.00	8590.00	79.00	8669.00
1986-87	7283.00	1589.00	8872.00	54.00	8926.00
1987-88	6863.00	1241.00	8104.00	39.00	8143.00
1988-89	5211.00	917.00	6128.00	44.00	6172.00
1989-90	5493.00	1177.00	6670.00	36.00	6706.00
1990-91	3792.00	481.00	4273.00	24.00	4297.00
1991-92	3680.00	876.00	4556.00	30.00	4586.00
1992-93	3207.00	951.00	4158.00	15.00	4173.00
1993-94	2799.00	686.00	3485.00	11.00	3496.00
1994-95	1239.00	176.00	1415.00	3.00	1418.00
1995-96	1056.00	213.00	1269.00	5.00	1274.00
1996-97	1352.00	281.00	1633.00	12.00	1645.00
1997-98	1491.51	149.51	1641.50	10.40	1651.90
1998-99	1555.75	136.93	1692.68	9.68	1702.36
1999-00	1556.32	180.40	1736.72	9.03	1745.75
2000-01	3592.95	1296.26	4889.21	93.54	4982.75
2001-02	9530.03	2347.78	11877.81	111.07	11988.88
2002-03	8265.16	2478.82	10743.98	149.81	10893.79
2003-04	10286.34	3611.37	13897.71	155.51	14053.22
2004-05	8097.77	5000.71	13098.48	161.89	13260.37
2005-06	7774.81	4296.02	12070.83	154.08	12224.91
2006-07	6463.92	3368.97	9832.89	122.94	9955.83
2007-08	6610.23	3298.08	9908.31	139.12	10047.43
2008-09	6534.85	3929.68	10464.53	237.50	10702.03

2009-10	7892.98	3851.49	11744.47	210.89	11955.36
2010-11	7736.54	5043.18	12779.72	285.90	13065.62
2011-12	7456.03	6413.91	13869.94	358.26	14228.20
(CDA, 2013)					

The gradual decline of fish landing study from 1985 to 2000 has been due to over-netting, increase of salinity of Chillika lake and also its pollution load from the surrounding agricultural field. Climate change and global warming have added some stress factors towards dealing through increase salinity and siltation of natural lake. But opening of new mouth during 2001-02, have invited a new biance in lake water with belligerence in fish population reflected through increase fish landing scenario. So this is a good example, where in anthropogenic inference has rightly added to ecological health and resilience.

Graphical delineation 7

Fresh	Water Species	Marine species		
Local	Scientific Name	Local Name	Scientific Name	
Name				
Bhakur	Catla catla	Borai	Sciaena glaucus	
Chitala	Notopterus chitala	Sankucha	Trygon sephen	
Kalabainsi	Labeo calbasu	Choeli	Thrissocles species	
Kau	Anabas scandens	Seba Khainga	Chanos chanos	
Kerandi	Barbus species	Khanda	Pristis species	
		magar		
Mirkali	Cirrhina mrigala	Munda magar	Carcharhinus	
			gangeticus	
Pohala	Cirrhina reba	Mota magar	Carcharhinus limbatus	
Rohi	Labeo rohita	Kabla	Sardinella fimbriata	
Seula	Ophicephalus	Baghua	Galeocerdo rayneri	
	striatus	magar		
Magur	Clarius batrachus	Khainga	Mugil cephalus	

Table 64: List of important fishes to indicate the ichthyofaunal diversity status of Chilika.

Table 65: Bird population in Chilika during winter

Year	Birds No.	% Change
2005	958681	
2006	678783	-29.20
2007	839529	23.68
2008	892998	6.37
2009	890813	-0.24
2010	924578	3.79
2011	804452	-12.99
2012	877230	9.05
2013	719262	-18.01

The incoming of migratory birds is on decline between 2012 to 2013 and it is very conspicuous by having the decline data 18.01% over previous year.

The late arrival of winter season and soaring of mean winter temperature may be attributed to these decline. The overhauling of natural setup in welcoming urbanisation and associated deforestation in the catchment area are also responsible for this decline.

Attributes	No. of	Severity of	Frequency of	Score	Rank
	people	impact	impact		
Problems	affected				
Irrigation	7	7	8	22	2 nd
Disease-pest	6	6	7	19	4 th
attack					
Low quality	7	5	5	17	5 th
seeds					
Salinity	8	6	7	21	3 rd
Climate Change	9	8	7	24	1 st
Lack of	5	6	6	17	5 th
knowledge					
Total	42	38	40	120	

Table 66: Matrix Ranking: Participatory Perceptual Analysis on Dominant Problems Affecting Rural Life in Chilika Social Ecology

The brunt of climate change is predominated, has been evinced in the participatory matrix ranking by local people. It has been found that the perceived effect of climate changes is the highest followed by lack of irrigation and salinity problem. This shows that, the natural networking of problems among three negative actors i.e. climate change, irrigation and salinity.

Peference in scoring Items (Perceived Problems affecting rural life)

Attributes	Producti	Cookin	Scen	Diseas	Climat	Profi	Tot	Ran
	on	g	t	e-pest	ic	t	al	k
Varieties		quality		free	resista			
,					nt			
Nadiarasa	3	6	6	4	3	4	26	7th
Tulasibasa	3	7	8	4	3	3	28	5th
Padmakesh	2	5	6	3	3	2	21	8th
ari								
Ratantudi	5	5	5	3	4	5	27	6th
Narada	5	6	5	6	8	6	36	2nd
Masuri	8	7	5	7	6	8	41	1st
Swarna	7	6	4	5	6	6	34	3rd
1014	6	5	4	5	5	6	31	4th
Total	39	47	43	37	38	40		

In this participatory analytical process, the local people has selected 7 rice varieties grown in that area. The attributes are, Production, Cooking quality, Scented, Disease-pest free, Climatic resistant, Profit. It has been found that, the variety Masuri has splendidly combine production, profit, resilience to climate change and it has ranked the first position followed by Narada, Swarna etc. According to people perception, the variety Narada gives less production than Masuri, Swarna, 1014, but the variety has good resilience to climate change. That's why the variety Narada is so popular in coastal areas.

Table 68: Matrix Ranking: Participatory Perceptual Analysis onCauses of Environment Degradation

Attributes Problems	No. of people affected	Severity of impact	Frequency of impact	f Score	Rank
Deforestation	7	8	6	21	1st
Over-netting	6	6	7	19	3rd

Results and Discussion

T 7 1 1 1		-	-		
Vehicles	5	6	6	17	5th
Population	5	8	7	20	2nd
growth					
Tourist pressure	4	4	5	13	6th
More Boats	5	6	7	18	4th
Total	32	38	38		

In this participatory analytical process, the local people have pointed out various problems lead to environment degradation like Deforestation, Overnetting, Vehicles, Population growth, Tourist pressure, More no. of Boats and ranked among them according to some attributes like, No. of people affected, Severity of impact, Frequency of impact. Deforestation is found as the main contributor towards environment degradation, followed by Population growth pressure, Over-netting, more no. of boats, etc.

Peference in ranking Impact on Enviornment

Risk	No.	Explanation	
Increase in crop	63	There was increased phenomenon of	1
diseases	(78.75%)	certain type of disease, like- blast in	
		seedbed of paddy, yellowing of leaves,	
		curling of leaves and rotting of seedlings	
		etc. of different crops.	
Reduction in	47	Reduction in yield of different Rabi	6
Agricultural	(58.75%)	crops due to high temperature and also	
production		Kharif paddy due to less rainfall	
Increase in	45	Increase in the attack of different types	7
insect-pest	(56.25%)	of jassids and micro-incidences	
attack		organisms.	
Increase in	52	Due to sea level rising and increase in	5
incidence of	(65%)	temperature, the problem of salinity is	
salinity		increasing to a significant extent.	
		Increase in temperature leads to increase	
		in evaporation of water leaving	
		dissolved salts at the surface soil, which	
		in turn leads to increased problem of	
		salinity.	
Increase in	60	Due to increased pest and insect attack	2
coast of	(75%)	and also due to increased diseases costs	
cultivation		of insecticide and fertilizer have also	
		increased to a significant level.	
Increase in	45	Different types of diseases of hen, duck,	7
animal diseases	(56.25%)	animals etc. like- white faeces, spot in	
		the body, sterility etc. has increased.	
Decrease in fish	37	Growth rate of fish declined mainly due	8
growth rate	(46.25%)	to overfishing and increased saline level.	
Increase in cost	54	Now farmers have to move towards	4
of fish	(67.5%)	deep sea to catch fish which increase	
		fish cultivation the both risk and cost of	
		fish cultivation.	

Table 69: Distribution of respondents according to perceived risks (N=80)
Decrease in	58	Area under mangrove forest has also	3
forest area	(72.5%)	declined due to deforestation and	
		frequent disasters like cyclone.	
Extinction of	30	Certain local animal and bird species	10
certain plants,	(37.5%)	has been totally vanished from that area.	
birds and			
animal species			
Decrease in	22	Income of the farmers has reduced due	11
Income	(27.5%)	to crop loss, low production and	
		increase in cost of cultivation.	
Increase in	35	Peoples are migrating towards	8
migration of	(43.75%)	Bhubaneswar, Kolkata, Gujarat and	
people		Delhi etc. for job and better livelihood.	

Table 70. I electron on change dynamics (11–00)	Table 70:	: Perception o	on Change	dynamics	(N=80)
---	-----------	----------------	-----------	----------	--------

Factors	No.	Rank
Climate Change/Global warming	27 (33.75%)	5
Increase in Temperature	72 (90%)	2
Erratic Rainfall	67 (83.75%)	3
Increase in disasters	75 (93.75%)	1
Expansion of Sea shore and seal level rise	43 (53.75%)	4

Graphical delineation

People by less no. do believe that there is global warming or climate change. But, people in high intensity do believe that, there has been change in temperature, increase in disasters and rainfall has developed an erratic pattern. So, global warming as rhetoric, may not be that socialized as such, but there has been a clear perception on changes of meteorological parameters.

 Table 71: Perception on Adaptation (N=80)

Factors	No.	Rank
Govt. policies to mitigate climate change impact.	25 (31.25%)	3
Adoption as per govt. policies	15 (18.75%)	4
Change in sowing date	58 (72.5%)	2
Varietal change	63 (78.75%)	1

Most of the respondents have opted for change in conventional rice variety as a mitigation strategy to combat the climate change. They have also opted for change in sowing time as another highly expectable strategy. But

interestingly, a few percent of farmers off for having a change in govt. policies.

Key threats	Likely influence	Likelihood
	on ecological	of changes
	Character (C=	in
	Component, P=	ecological
	Process and S=	character
	Services)	in near
		term (High
		Medium,
		Low)
High rates of siltation	Loss of water	High
Assessments of current siltation rates as	holding capacity	
well as results from analysis of sediment	(C) and thereby	
cores indicate that Lake Chilika is	ability to regulate	
receiving elevated silt loads. Changes in	hydrological	
land use within Chilika Basin aggravate	regimes (S)	
this trend. Further fragmentation of		
floodplains have also led to changes to		
overall fluvial dynamics of the deltaic		
system, with the aggraded channels also		
being a course of silt into the lake.		

Table 72: Threats analysis for Lake Chilika

Changes in surface-water connectivity	Changes in	Medium
Maintaining lagoon-sea connectivity is a	hydrological	
challenge owing to high littoral drift,	regimes (C), water	
basin sedimentation and tidal influence.	balance (C),	
The inlet condition is rendered unstable	species migration	
due to reduction in tidal prism with	patterns between	
increasing length of the channel. While	sea-lake (P), ability	
the lagoon is known to go through phases	to sustain fisheries	
of closure of sea mouth, these changes	(S) and regulate	
have high implications for ecosystem	hydrological	
service Additionally, trends indicate	regimes (S)	
increasing demands for upstream water		
uses, which would impact spatial as well		
as temporal availability of water		
resources downstream. This is likely to		
induce changes in salinity regimes, with		
concurrent changes in biota and		
ecosystem services.		
Regional Climate change	Changes in	Medium to
Mahanadi River Basin level climate	hydrological	High
modelling studies indicate changes in	regimes with	
precipitation patterns, impacting	associated changes	
temporal variability of the freshwater	in several	
flow regimes. These changes will have	components and	
an impact on salinity gradient, which is a	processes	
key determinant for wetland biota and		
ecosystem services.		
Invasion of Phragmites karka	Increased siltation	High
Rapid increase in area under Phragmites	in northern sector	
karka is likely to enhance siltation in	(C), stress on fish	
northern sector, stress fish breeding	breeding grounds	
grounds, shift vegetation belts and create	(P) and community	
health hazards for communities.	livelihoods (S)	

Increasing tourist pressure	Stress on biota (C)	High
Restoration of overall aesthetics of	and ecosystem	0
Chilika, post hydrological intervention	services (S)	
has led to increased touristic pressure.		
Unmanaged tourism beyond carrying		
capacity of the wetland system would		
create stresses on biota (for example		
Irrawaddy Dolphins) and ecosystem		
services.		
Increasing tourist pressure	Stress on biota (C)	High
Analysis of historical trends indicates a	and ecosystem	
rapid increase in number of active fishers	services (S)	
as wail as fishing boats deployed in the		
wetland system. The overall catch is also		
hovering near the recommended		
sustainable yield levels. If not managed		
suitably, there is a high risk of		
overexploitation of fisheries resource,		
with severe impacts on community		
livelihoods.		

Continued incidence of destructive	Stress on biota (C)	High
fishing practices	and ecosystem	C
Chilika is subject to several detrimental	services (S)	
fishing practices which pose major		
threats to its sustenance. Shrimp		
aquaculture on the shorelines of the		
central, southern and outer channel		
impedes inundation patterns and stresses		
the breeding and feeding grounds of		
fishes and prawns. Prevalence of Khonda		
fisheries on migration pathways leads to		
loss of valuable biodiversity including		
juveniles which are destroyed in the		
process, and creates obstruction to		
natural recruitment. Cast net operation		
near now mouth is affecting broad fishes		
of mullets. Indiscriminate propelling of		
boats churn lake bottom leading to		
increased turbidity. Use of fish mesh		
seine nets in large scale throughout the		
lake blocks migratory routes of fish and		
prawns and leads to killing of juveniles.		
Indiscriminate shrimp post larvae		
collection has severe implications for		
biodiversity lost in the by-catch.		
Skewed resource benefit sharing	Stress an biota (C)	Medium
patterns	and ecosystem	
The current fish marketing system	services (S)	
prevalent in Chilika leads to higher		
returns to middlemen and commission		
agents who exploit the vulnerability of		
tishers to gain undue returns from the		
enterprise. Even with increase in efforts,		
the return to fishers remains insufficient		
with respect to livelihood needs.		